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Abstract
The Tibetan Plateau (TP) is an important component of the global climate system, while the characteristics of its climate 
are poorly represented in most regional climate models at coarse resolutions. In this study, a 20-year (2000–2019) dynami-
cal downscaling simulation at the gray-zone resolution (9 km) using the WRF model driven by the ERA5 reanalysis is 
conducted over the TP. Based on comparisons against in-situ observations and the Integrated Multi-satellite Retrievals for 
GPM (IMERG) version 6 satellite precipitation product, the assessment of basic climate variables, such as near-surface 
air temperature (T2m) and precipitation, is performed to evaluate the model’s performance and understand its added value 
better. Results show that both WRF and ERA5 can successfully reproduce the spatial patterns of annual mean and seasonal 
mean surface air temperature. However, significant cold and wet biases are found especially over the southeastern TP in 
ERA5, which are greatly improved in WRF with reduced RMSEs. Not only the climatological characteristics, but also the 
inter-annual variability and seasonal variation of T2m and precipitation are well captured by WRF which reduces the cold 
and wet biases especially in winter and summer compared to ERA5, respectively. Besides, at daily scale, the overestima-
tion of precipitation in WRF and ERA5 is mainly caused by the overestimated precipitation frequency when precipitation 
intensity changed slightly. Furthermore, WRF outperforms ERA5 in capturing the diurnal variation of precipitation with 
more realistic peak time in all sub-regions over the TP. Further investigation into the mechanism of model bias reveals that 
less simulated snow cover fraction plays a crucial role in increasing the surface net energy by affecting surface albedo over 
the southeastern TP in WRF, leading to higher T2m. In addition, less water vapor transport from the southern boundary of 
TP leads to reduced wet bias in WRF, indicating that the added value in dynamical downscaling at gray-zone resolution is 
obtained by representing water vapor transport more realistically.
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1 Introduction

The Tibetan Plateau (TP), also called the “Third Pole”, is the 
highest and most extensive highland in the world, and exerts 
a great influence on regional and global climate through its 

thermal and dynamical forcing mechanisms (Xu et al. 2019; 
Wang et al. 2018a; Nan et al. 2021; Wen et al. 2022). TP has 
a tremendous impact on Asian Summer Monsoon (ASM) 
through elevated heating and forced topographic Rossby 
waves (Ge et al. 2017; He et al. 2019; Son et al. 2019; Seok 
and Seo 2021; Li et al. 2022a). It is also called the “Asian 
water tower”, which contains the largest number of glaciers 
outside the polar regions (Yao et al. 2012). The extremely 
high and varied topography and complex land surface con-
ditions over the TP resulted in the varied regional and local 
climates. And the TP has warmed up in a higher trend than 
the rest of the world in the past decades (Chen et al. 2015; 
Yao et al. 2019, 2022). Recently, climate change over the TP 
has gained growing attention due to its significant impacts 
on climate system and regional hydrological cycle. Accu-
rate regional climate characteristics are urgently needed to 
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better understand climate change over TP. However, due to 
the steep terrain and harsh environment, the distribution of 
observation stations is very uneven and sparse over the TP. 
Most of the meteorological stations are located in the eastern 
TP, and few can be found over the north-western TP. Thus, 
climate models, including global climate models (GCMs) 
and regional climate models (RCMs), are essential tools to 
study climate change over the TP (Gao et al. 2015; Fu et al. 
2021; Zhang and Gao 2021).

GCMs are widely used in climate simulation and projec-
tion over the TP. Lun et al. (2021) evaluated the simulation 
performance of precipitation and temperature with GCMs 
from Coupled Model Inter-comparison Project Phase 5 and 
6 (CMIP5 and CMIP6) over the TP. The results showed 
that GCMs tend to overestimate precipitation and under-
estimate surface air temperature, and GCMs of CMIP6 
perform better than those of CMIP5. Although GCMs can 
resolve large-scale climate systems, they still have limita-
tions in reproducing local and regional climate, especially 
over regions with complex terrain such as the TP, due to 
their coarse resolution (Yue et al. 2016; Jiang et al. 2016; 
Chen and Frauenfeld 2014; Duan et al. 2013; Salunke et al. 
2019; Xu et al. 2017a). With finer horizontal resolution and 
better-resolved regional characters, such as local topogra-
phy and land surface conditions, RCMs can well reproduce 
the regional to local climate (Giorgi 2019; Xu et al. 2019; 
Gutowski et al. 2020). RCMs have been widely used in 
simulating and projecting regional climate change over the 
TP (Gao et al. 2015; Wang et al. 2018a; Niu et al. 2021). 
Gao et al. (2015) conducted a 30-year continuous simu-
lation over the TP using the Weather Research and Fore-
casting Model (WRF, https:// www. mmm. ucar. edu/ weath 
er- resea rch- and- forec asting- model) with a 30-km spatial 
resolution and showed smaller biases against observations 
compared with global reanalysis forcing. By using multiple 
RCMs from the Coordinated Regional Climate Downscal-
ing Experiment (CORDEX) at the resolution of 50 km, Guo 
et al. (2018) evaluated the RCMs’ performance in reproduc-
ing surface air temperature and precipitation changes over 
TP, and found that RCMs have cold and wet biases respec-
tively. Driven by the Community Climate System Model 
(CCSM), Zhang and Gao (2021) used the WRF model to 
study the projected changes in precipitation recycling over 
the TP, and showed increasing trends of precipitation recy-
cling ratio changes with elevation under the RCP4.5 and 
RCP8.5 scenarios.

Over the TP with steep terrain, the choice of horizontal 
resolution is very important for regional climate simula-
tion, especially for precipitation and water vapor transport 
simulations (Xu et al. 2018; Lin et al. 2018). Karki et al. 
(2017) quantified the added value of convection-permitting 
(CP) (≦4 km) regional climate simulations over the Hima-
layas, and suggested added value of the convective-scale 

resolutions in realistically resolving the topo-climates over 
the central Himalayas. Recently, studies have shown that 
regional climate modeling at the convection-permitting 
scale can well simulate the precipitation distribution and 
diurnal cycle over the TP (Gao et al. 2020; Li et al. 2021; 
Zhou et al. 2021; Ma et al. 2022). However, the CP simula-
tions over the TP require huge computing resources, and 
currently limit the long-term climate change simulations. 
The resolution of approximately between 15 and 4 km 
(such as 9 km) is the so-called gray-zone scale, at which 
scale clouds and convective transport can be partially and 
explicitly represented (Shin and Hong 2013). Many studies 
have done simulations at 9 km (Maussion et al. 2014; Ou 
et al. 2020; Wang et al. 2020; Lin et al. 2018; Huang et al. 
2021). Lin et al. (2018) investigated the effect of model 
resolution on regional climate simulation over the TP with 
three spatial resolutions (30, 10, and, 2 km, respectively), 
and suggested that a resolution of approximately 10 km 
can strike a balance between a more spatially detailed 
simulation and expensive computational cost. Compared 
to gray-zone resolution simulation, the CP simulation 
usually needs several tens of computing cost and storage. 
When the spatial resolution is approximately 9 km, which 
is within the gray-zone grid spacing, the cumulus param-
eterization scheme (CPS) can be used or ignored. Ou et al. 
(2020) conducted four WRF simulations at 9 km resolu-
tion to evaluate the simulation of the precipitation diurnal 
cycle and found that all the experiments with CPS over-
estimate the amount of precipitation, and the experiment 
without CPS outperforms the others. Although several 
regional climate simulations at gray-zone or convection-
permitting scale have been performed over the TP, most 
of the experiments were conducted over a relatively short 
period (months) or parts of TP (Li et al. 2021; Zhao et al. 
2021; Zhou et al. 2021). Due to the significant role of TP 
in global and regional atmospheric circulation, and the 
non-negligible effects of global warming, it is essential to 
generate an accurate long-term dataset with fine resolution 
(at gray-zone or CP scale) covering the whole TP and its 
surrounding areas.

In this paper, driven by the fifth generation of atmospheric 
reanalysis from Europe Centre for Medium-Range Weather 
Forecasts (ECMWF) (ERA5) (Hersbach et al. 2020), 20-year 
(1999–2019) long-term dynamical downscaling at gray-zone 
(9 km) scale is conducted using the WRF model with the 
year 1999 as the spin-up time. The aim of this study is to 
evaluate the performance of long-term regional climate sim-
ulation at the gray-zone scale over the TP, and to assess the 
possible reasons for model biases. This study is organized as 
follows, Sect. 2 describes the model, data, and experimental 
design. Section 3 presents the evaluation results compared 

https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
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with observations. The possible reasons for model biases are 
discussed in Sect. 4, and this study is summarized in Sect. 5.

2  Methodology

2.1  Model and experimental design

The state-of-the-art non-hydrostatic WRF model (version 
4.1.1) was used in this study (Skamarock et al. 2019). The 
model domain using Lambert projection is centered at 33° 
N, 88.5° E, with 531 × 361 grid points in the east–west 
and south-north direction at 9 km horizontal resolution 
(WRF9), respectively (Fig. 1), covering TP and its sur-
roundings areas. Forty vertical unevenly distributed levels 
were defined from the surface to the model top at 50 hPa. 
The initial and boundary conditions are from the ERA5 
global reanalysis, which has a horizontal resolution of 
0.25° × 0.25° and every 3 h were downloaded. The model 
was integrated continuously for 21 years, starting from 
1 Jan 1999 to 31 Dec 2019, and the first year (1999) was 
used as spin-up time.

Based on the previous study (Ou et al. 2020) over the 
TP, the following physical parameterization schemes were 
used in this study: RRTMG long-wave and short-wave 
radiative transfer scheme (Iacono et al. 2008), the Unified 
Noah land surface model (Tewari et al. 2004) (NOAH), 
Yonsei University (YSU) planetary boundary layer (PBL) 
parameterization (Hong et al. 2006) and Thompson micro-
physics parameterization scheme (Thompson et al. 2008). 
The cumulus parametrization scheme was switched off 
in the WRF simulation at gray-zone resolution (9 km), 
which is similar to that of Ou et al. (2020) and Sun et al. 
(2021). To prevent the WRF simulation from drifting away 

from the global reanalysis forcing, the spectral nudging 
(SN) method, which is considered an indirect assimila-
tion method (von Storch et al. 2000), was applied to wind 
fields above the PBL. SN is an efficient method to improve 
the performance of dynamical downscaling in WRF (Tang 
et al. 2017; Mai et al. 2020). SN can force the model close 
to the long waves of the driving data, whereas adding val-
ues in the smaller scales (Miguez-Macho et al. 2005). The 
wavenumber of 4 is employed in zonal and meridional 
directions, which represents that the large-scale circula-
tion with a wave-length larger than about 1000 km will be 
nudged, and the nudging coefficient of 3.0 ×  10–4 was used.

2.2  Validation dataset

To evaluate the accuracy of the regional climate products 
produced by WRF, several observation datasets including in-
situ observations, satellite precipitation and snow products, 
and the ERA5 reanalysis dataset were used.

The daily in-situ observations used in this study, which 
include daily near-surface air temperature (at 2 m above 
ground level, T2m), maximum/minimum surface air tem-
perature (Tmax/Tmin), and daily precipitation, are provided 
by the data service center at China Meteorology Administra-
tion (CMA, http:// data. cma. cn/ en). There are 143 observa-
tion stations available over the TP, and most of them are 
located in eastern TP (Fig. 1). The station observations have 
gone through a quality control procedure. The standard nor-
mal homogeneity test (SNHT, Alexandersson and Moberg 
(1997)) was applied to T2m, Tmax, and Tmin, and 6 stations 
with perceptible shifts were corrected.

To better evaluate the simulated precipitation character-
istics especially the diurnal cycle of precipitation, the Inte-
grated Multi-satellite Retrievals for GPM (IMERG) version 

Fig. 1  Domain and the topog-
raphy of the WRF experiment 
(unit: m). Black dots represent 
the distribution of in-situ sta-
tions, and three sub-regions 
(TP-NE, TP-M, TP-SE) are 
framed with white lines

http://data.cma.cn/en
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6 satellite precipitation product, which has high spatial 
(0.1° × 0.1°) and temporal (30 min) resolutions, is also used 
(Ma et al. 2022; Li et al. 2022a; Zhang et al. 2018). The 
IMERG Final Run data uses monthly precipitation gauge 
analysis from Global Precipitation Climatology Center 
(GPCC) and ancillary data from the ECMWF for calibra-
tion. Therefore, IMERG is considered one of the most reli-
able products that are suited for research studies (Huffman 
2015). In previous studies, IMERG has been extensively 
studied and evaluated against ground-based, satellite, and 
reanalysis products around the world, and results all indicate 
that IMERG can provide reliable precipitation characteris-
tics for research in the TP region (Pradhan et al. 2022; Tang 
et al. 2020; Li et al. 2022b). The snow cover fraction (SCF) 
dataset from the Interactive Multi-sensor Snow and Ice Map-
ping System (IMS), which is provided by the U.S. National 
Ice Center (USNIC) for the Northern Hemisphere (Ramsay 
2000), is also used to compare with the WRF9 simulated 
snow cover over the TP. The IMS data has a temporal resolu-
tion of 24 h and a spatial resolution of 24 km.

For the comparison of surface air temperature between 
WRF9, ERA5 reanalysis and, in-situ observations, the 
WRF9 results and ERA5 reanalysis data are interpolated 
to observation stations using nearest interpolation. Due to 
the difference in topography height between WRF9 grids 
and station locations, the annual mean lapse rate (LR) of a 
specific region (− 4.15, − 4.02, and − 5.06 K/km for stations 
located in western TP, northeastern TP, and southeastern TP, 
respectively) is used to correct biases of WRF9 surface air 
temperature after interpolation (Wang et al. 2018b). Three 
sub-regions were selected for detailed analysis, which are 
northeastern TP (TP-NE, 37 stations), central TP (TP-C, 23 
stations), and southeastern TP (TP-SE, 71 stations) (Fig. 1). 
TP-NE covers the Qaidam Basin, TP-SE represents areas 
with sharp changes in terrain altitude, and TP-C contains 
most of the remaining in-situ stations.

3  Results

3.1  Evaluation of surface temperature 
and precipitation over the TP

The general ability of the WRF model to reproduce the 
mean surface climatology is firstly assessed by comparing 
the simulation results with the in-situ observations during 
the period of 2000–2019.

Figure 2 shows the 20-year (2000–2019) averaged biases 
of annual, summer (JJA) and winter (DJF) mean T2m, Tmax, 
and Tmin. For annual mean T2m (Fig. 2a, d), both WRF9 
and ERA5 have underestimated T2m by 2–4 ℃ over regions 
south of 35° N, but slightly overestimated T2m over Qaidam 
Basin. The WRF9 clearly underestimates the annual mean 

Tmax over the TP, while larger cold biases can be found in 
ERA5 with the largest bias reaching – 8 ℃ over the TP-SE 
region. The spatial distribution of summer mean temperature 
biases is quite similar to that of the annual mean (Fig. 2g–l) 
with lower biases. In winter, ERA5 clearly shows larger cold 
biases over all sub-regions as shown in Fig. 1, especially for 
Tmax with the largest cold bias reaching – 9 ℃. Table 1 lists 
the statistical skill scores, including the root mean square 
error (RMSE), the spatial correlation coefficient (SCOR), 
and the absolute mean bias of 20-year averaged annual and 
seasonal mean T2m, Tmax, Tmin, and, precipitation of the 
WRF9 and ERA5 against in-situ observations over the TP. It 
can be found that both WRF9 and ERA5 can reproduce the 
spatial patterns of surface air temperature with the SCORs 
all above 0.87, and WRF9 outperforms ERA5 in simulating 
temperature with higher SCORs and lower RMSEs.

Figure 3 shows the spatial distribution of annual and 
summer mean precipitation biases from WRF9 and ERA5 
over the TP compared to in-situ observations and IMERG, 
respectively. Compared to the in-situ observations, WRF9 
can well simulate the distribution of annual mean precipi-
tation with the SCOR at 0.84 and RMSE at 0.43 mm/day, 
but it slightly underestimates precipitation over south TP-C. 
On the contrary, obvious wet biases can be found over the 
whole TP in ERA5 and the RMSE reaches 1.41 mm/day 
which is about triple that of WRF9. The spatial patterns of 
summer mean precipitation biases are quite similar to that 
of the annual mean, and WRF9 can significantly reduce the 
wet biases which exist in ERA5, especially at the south edge 
of TP. Lin et al. (2018) showed the horizontal resolution of 
10 km can represent the barrier effect of high mountains 
and the channeling effect of valleys compared to 30 km, 
and 2 km can reproduce more details but needs expensive 
computing costs. In our study, it is also found that most wet 
or dry bias of precipitation and water vapor from WRF9 
compared to ERA5 are consistent with the higher or lower 
altitude at the south of TP. Therefore, gray-zone scale is the 
optimum resolution that simulates the entire TP, striking 
the balance between simulation performance and computing 
cost. Our gray-zone simulation also can support guidance for 
convection-permitting model (CPM) long-term simulation 
in the future. As shown in Table 1, it is clear that WRF9 
outperforms ERA5 in reproducing seasonal precipitation 
with higher SCOR and lower RMSE and bias, indicating 
the added value in dynamical downscaling at the gray-zone 
resolution over the TP.

3.2  Inter‑annual and seasonal variation of surface 
temperature and precipitation

Figures 4 and 5 depict RMSE and temporal correlation 
(TCOR) of annual mean T2m and precipitation at each 
station between WRF9 simulation, ERA5 reanalysis, and 
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in-situ observations for the period 2000–2019. WRF9 can 
well simulate the inter-annual variation of T2m with most 
of TCORs/RMSE higher/lower than 0.6/1.0 ℃, respectively, 
while ERA5 produces larger RMSEs especially over TP-C 
where the RMSEs of the inter-annual variation of T2m is 
larger than 2.6 ℃, and lower TCORs also exist over there. 
For precipitation, although WRF9 and ERA5 show similar 
performance in simulating the inter-annual variation with 
most TCORs at about 0.5, WRF9 reduces the RMSEs espe-
cially over southern TP.

The inter-annual variations of SCORs and RMSEs of 
seasonal mean T2m and precipitation between WRF9, 

ERA5 reanalysis, and in-situ observations are shown in 
Figures s1 and s2. For T2m, the performance varies greatly 
in different seasons. The SCORs between WRF9, ERA5 
and in-situ observations are higher than 0.9 in summer and 
autumn, and the RMSEs are all below 3 ℃ with the mini-
mum RMSEs in summer. In spring and winter, both WRF9 
and ERA5 show larger RMSEs ranging from 2.5 to 4.5 ℃, 
and WRF9 outperforms ERA5 with higher SCORs and 
lower RMSEs, especially in winter. For seasonal precipi-
tation, WRF9 generally outperforms ERA5 with compa-
rable SCORs and significantly lower RMSEs. WRF9 and 
ERA5 show comparable SCORs ranging from 0.7 to 0.8 

Fig. 2  The differences of 20-year (2000–2019) annual (a–f), summer (g–l) and winter (m–r) averaged daily mean  (T2m), maximum  (Tmax), and 
minimum  (Tmin) 2 m above ground level (AGL) temperature between WRF9, ERA5 and in-situ observation, unit: ℃
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in spring, and WRF9 reduces the RMSEs by about 1 mm/
day. The SCORs for summer precipitation are relatively 
lower at about 0.6, and RMSEs are the highest among the 
four seasons. WRF9 improves the summer precipitation 
simulation by a significant reduction of RMSE each year. 
It also gives higher SCORs and lower RMSEs than ERA5 
in autumn and winter.

Taylor diagrams (Taylor 2001) are used to further assess 
the model’s ability to simulate the inter-annual variability 
of annual mean precipitation and surface air temperature in 
three sub-regions (Fig. S3). For T2m, the WRF9 simulations 
are closer to the in-situ observation reference especially for 
TP-NE and TP-SE, indicating better performance in repro-
ducing inter-annual variation of T2m over these two sub-
regions. However, ERA5 shows larger normalized stand-
ard deviations over TP-C and TP-SE. WRF9 outperforms 
ERA5 in simulating the inter-annual variability of Tmax 
with higher TCORs, and the normalized standard deviations 
are close to 1. Compared to T2m and Tmax, both WRF9 
and ERA5 show relatively lower performance in simulat-
ing the inter-annual variation of Tmin. WRF9 shows better 
skill over TP-SE and TP-NE. For precipitation, WRF9 can 
largely improve the simulation of inter-annual variability 
over TP-C and TP-SE. Over TP-NE, both WRF9 and ERA5 

show lower normalized standard deviations compared to in-
situ observation, and ERA5 slightly outperforms WRF9 with 
higher TCOR.

The monthly variations of regional averaged T2m and 
precipitation over three sub-regions are shown in Fig. 6. 
Over all three sub-regions, ERA5 shows significantly over-
estimated monthly precipitation, while WRF9 slightly 
underestimates it. Large wet biases up to 3 mm/day can be 
found in ERA5 simulated precipitation in warm seasons, 
especially over TP-C. T2m is well reproduced by both ERA5 
and WRF9 over TP-NE region with slightly overestimated 
summer T2m in WRF9 simulation. Over TP-C and TP-SE 
regions, cold biases exist in WRF9 simulation and ERA5 
reanalysis, and ERA5 tends to produce larger cold biases 
in cold seasons. Overall, WRF9 can reduce the wet biases 
existing in ERA5 in summer and cold biases in winter.

In general, WRF9 can improve the simulation of inter-
annual variability and seasonal variation of surface tempera-
ture and precipitation, and shows added value compared to 
the driving data-ERA5 reanalysis.

Table 1  The SCOR, RMSE, 
and BIAS of Daily Mean 
 (T2m), Maximum  (T2max), 
and Minimum  (T2min) 2 m 
Above Ground Level (AGL) 
Temperature, Precipitation, 
during 2000–2019

WRF9 ERA5

BIAS RMSE CORR BIAS RMSE CORR

Prec (mm/day)
 Annual 0.07 0.43 0.84 1.08 1.41 0.80
 Spring 0.14 0.55 0.87 0.95 1.31 0.83
 Summer 0.42 1.07 0.74 1.81 2.43 0.73
 Autumn 0.08 0.34 0.88 1.14 1.46 0.75
 Winter 0.14 0.24 0.84 0.46 0.67 0.77

T2m (℃)
 Annual 1.28 2.00 0.95 1.63 2.45 0.93
 Spring 2.10 2.72 0.94 2.22 3.12 0.91
 Summer 0.68 1.49 0.95 0.49 1.22 0.96
 Autumn 1.03 1.73 0.96 1.12 2.11 0.94
 Winter 1.34 2.37 0.95 2.72 3.96 0.89
 Tmax (℃)
 Annual 3.24 3.62 0.94 4.85 5.33 0.89
 Spring 3.77 4.17 0.94 6.86 7.38 0.88
 Summer 1.81 2.43 0.92 3.70 4.01 0.93
 Autumn 3.30 3.69 0.94 2.67 3.34 0.91
 Winter 4.09 4.44 0.96 6.13 6.95 0.85

Tmin (℃)
 Annual 0.75 1.88 0.95 2.91 3.60 0.93
 Spring 1.74 2.69 0.94 5.61 6.16 0.91
 Summer 0.96 1.70 0.95 2.11 2.43 0.97
 Autumn 0.13 1.53 0.96 0.13 1.96 0.94
 Winter 0.08 2.43 0.93 3.73 5.17 0.87
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3.3  Daily precipitation frequency and intensity

In terms of daily precipitation, the 20-year averaged daily 
precipitation frequency and intensity are calculated and 
shown in Fig. 7. The daily precipitation event is defined 
as the day which has an accumulated precipitation larger 
than 0.1 mm. For the observed distribution of precipitation 
frequency fraction, the high frequency is located over the 
southern and southeastern TP with a frequency fraction 

above 40%, and the frequency gradually decreases from 
southeast to northwest. WRF9 can reproduce the spatial 
pattern of precipitation frequency fraction with the SCOR 
at 0.88 and RMSE at 0.08, while it slightly overestimates 
the number of daily precipitation event over the TP espe-
cially over TP-SE. Although ERA5 can reproduce the dis-
tribution of precipitation frequency with SCOR at 0.78, it 
simulates much more daily precipitation events over the 
TP with a frequency fraction above 80%, which is twice 

Fig. 3  The differences of 20-year (2000–2019) annual (a, b) and 
summer (e–f) averaged daily precipitation (interpolated to observa-
tions) between WRF9, ERA5 and gauged observation, and the same 

for annual (c, d) and summer (g, h) averaged daily precipitation 
(interpolated to IMERG) between WRF9, ERA5 and IMERG, unit: 
mm/day
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Fig. 4  The spatial distribution of temporal RMSEs (row 1) and TCORs (row 2) of annual T2m temperature from WRF9 and ERA5 compared 
with in-situ stations, unit of (a, b): ℃

Fig. 5  Same as Fig. 4. but for precipitation, unit of (a, b): mm/day
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that of in-situ observation. The mean daily precipitation 
intensity is represented by using the total precipitation 
divided by precipitation days. The observed strong pre-
cipitation intensities (above 5.0 mm/day) are located over 
TP-SE and TP-C, and the intensity decreases from south 
and southeast to northwest. Both WRF9 and ERA5 can 
simulate the spatial distribution of precipitation intensity 

with the SCOR at about 0.73, but they all underestimate 
the intensity over the TP, especially over TP-SE and TP-C 
where high intensity exists in observation. Moreover, 
ERA5 tends to produce weaker precipitation intensity over 
TP-NE compared to WRF9 and in-situ observations. It 
can be concluded that the overestimation of precipitation 

Fig. 6  Seasonal cycle of 20-year monthly averaged precipitation (unit: mm/day) and T2m (unit: ℃) in three sub-regions [TP-NE (a), TP-C (b) 
and TP-SE (c)]

Fig. 7  Spatial distribution of frequencies (a, c, e, unit: 100%) and 
intensities (b, d, f, unit: mm/day) of 20-year averaged daily precipita-
tion from observations (row 1), WRF9 (row 2) and ERA5 (row 3), 

and RMSEs and SCORs are shown in the upper right of each sub-
picture compared to observations
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amount in ERA5 is mainly caused by the overestimation 
of precipitation frequency.

Figure  8 shows the regional averaged annual pre-
cipitation days at different precipitation intensities over 
TP-NE, TP-C and TP-SE. In general, WRF9 can well 
simulate the precipitation days at different precipitation 

intensities over all three sub-regions with slight underes-
timations over TP-NE and slight overestimations from 0.1 
to 4.0 mm/day over the other two sub-regions. However, 
ERA5 significantly overestimates the precipitation days 
at all precipitation intensities over all sub-regions, lead-
ing to an overall overestimation of precipitation amount. 

Fig. 8  The number of annual averaged precipitation days binned by intensity (unit: mm/day) based on the in-situ observations, WRF9, and 
ERA5 for three subregions (averaged over the stations in each subregion)

Fig. 9  Spatial distribution of diurnal peak time (local standard time: LST, units: hour) of amount, frequency and intensity in IMERG (a, d, g), 
WRF9 (b, e, h) and ERA5 (c, f, i)
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In general, the WRF9 experiment at the gray-zone reso-
lution can improve the simulation of daily precipitation 
frequency and intensity, and shows added value in repro-
ducing daily precipitation events.

3.4  Diurnal cycle of precipitation

The IMERG satellite precipitation product is used as obser-
vation when evaluating the diurnal variation of precipitation 
from different sources. Figure 9 shows the peak time (LST, 
Local Standard Time) of precipitation amount, frequency, 
and intensity during 2001–2019 from IMERG, WRF9 simu-
lation, and ERA5 reanalysis, ignoring the year 2000 because 
the IMERG observation begins from June 2000. As Singh 
and Nakamura (2009) shows, precipitation activity peak 
time occurs during late afternoon, late evening, and sec-
ondary morning over hilly regions, valleys and large lakes, 
respectively. In Fig. 9, compared to ERA5, WRF9 exhibits 
more details due to the improvement of terrain representa-
tion. The occurrence time of maximum precipitation amount 
and frequency in mountains and valleys is consistent with 
Singh and Nakamura (2009). As is shown in Fig. 9a, based 
on satellite observation, the occurrence time of maximum 
precipitation amount appears from late afternoon to evening 
(1600-2000LST) along the southern edge of TP, TP-C, part 
of TP-SE and TP-NE regions except for Qaidam Basin, and 
from nighttime to early morning (2000-0400LST) over other 
regions. WRF9 can generally reproduce the peak time of 
the maximum precipitation mainly occurring during night-
time over TP-SE and southern TP, while it simulates the 
peak time about 4 h later than IMERG over north TP-C. 
Significant advanced precipitation amount peak time can 
be found in ERA5 over southern TP and TP-SE, where the 
maximum precipitation amount occurs from later afternoon 
to evening, which is about 4 h earlier than IMERG. Both 
WRF9 and ERA5 delay the peak time by about 4 h over 
Qaidam Basin. For the diurnal cycle of precipitation fre-
quency, the spatial distribution of peak time for IMERG is 
similar to that of precipitation amount, which is the same for 
WRF9. But for ERA5, there are great differences between 
the diurnal cycle of precipitation frequency and amount. As 
Fig. 7 shows, the frequency of daily precipitation events in 
ERA5 is above 80% over the TP, which is twice that of in-
situ observation. Figure 9 shows that the precipitation events 
that ERA5 simulates occur mainly in early afternoon, which 
may result from the excessive convective precipitation in 
ERA5. For the diurnal cycle of precipitation intensity, the 
peak time for IMERG appears from nighttime to early morn-
ing (2000-0400LST) over most regions of the TP, except for 
north of TP-C where the maximum precipitation intensity 
occurs from afternoon to evening (1400–1800LST). Similar 
to the simulation of precipitation amount peak time, WRF9 
well simulates the intensity peak time over southern TP 

with the maximum precipitation intensity occurring during 
nighttime, but delays the peak time by about 6 h over north 
of TP-C. ERA5 can reproduce peak time over western and 
north of TP-C, while it reaches the precipitation peak about 
6 h in advance over TP-SE.

The regional averaged diurnal cycle of precipitation 
amount, frequency, and intensity over three sub-regions dur-
ing 2001–2019 are shown in Fig. 10. Over all sub-regions, 
ERA5 overestimates precipitation amount, frequency, and 
intensity, especially around 1800LST. Over TP-NE, both 
WRF9 and ERA5 can reproduce the peak of precipitation 
amount and frequency in the afternoon (1800LST). While 
ERA5 cannot reproduce the diurnal variation of precipitation 
intensity with the peak time 6 h in advance, while WRF9 can 
fit the diurnal variation better. Over TP-C, the satellite obser-
vation has peak precipitation amount and frequency at about 
2000 LST, while the precipitation peaks in WRF9 and ERA5 
are about 4 and 2 h backward and ahead, respectively. Over 
TP-SE, the peaks of precipitation amount, frequency, and 
intensity from ERA5 are all 3–4 h ahead of IMERG. WRF9 
outperforms ERA5 in reproducing the diurnal variations of 
precipitation with closer peak time compared with IMERG.

4  Main mechanism for the added value 
of WRF9 simulation

As the spatial resolution increases, WRF9 outperforms 
ERA5 in many aspects not limited to T2m and precipita-
tion. The improvement of T2m may result from the differ-
ence in surface energy balance between WRF9 and ERA5. 
The improvement of precipitation may result from an overall 
improvement of the precipitation formation related environ-
ment, in which water vapor content and transport are dis-
cussed in this study. We will also discuss the main mecha-
nism for the diurnal cycle of precipitation in the following.

4.1  Surface energy balance

The surface energy budgets including radiation factors and 
surface heat fluxes have a strong connection with surface 
skin temperature. The surface energy balance and its connec-
tion with surface skin temperature over the Tibetan Plateau 
are estimated following the methodology in Li et al. (2016a). 
The surface energy balance equation is given by:

where � is the bulk emissivity, σ is the Stefan–Boltzmann 
constant,  Ts is surface skin temperature, ALBDEO is the 
land surface albedo, RSDS and RLDS are the downward 
shortwave and longwave radiation at surface, respectively, 

��T
4

s
= RLUS =(1 − ALBEDO) ∗ RSDS + �RLDS

− SHFX − LHFX − GHFX
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SHFX and LHFX are the sensible and latent heat flux at sur-
face, respectively, and GHFX is the ground heat flux, which 
is generally very small in the long-term average. To analyze 
the added value of WRF9 in simulating the distribution of 
surface air temperature, the annual and winter (when the 
maximum temperature bias occurs) mean surface net energy 
(the sum of right-hand terms in the above equation) from 
WRF9 and ERA5, and their differences are calculated and 
shown in Fig. 11. Generally, the spatial patterns of the sur-
face net energy obtained from WRF9 simulation are close to 
that from ERA5, but with more details of local-scale infor-
mation. From the differences in the surface energy between 
WRF9 and ERA5 (Fig. 11e, f), it is clear that WRF9 exhibits 
more surface net energy than ERA5 over TP-SE, especially 
in winter which shows positive deviation up to 35 W/m2. 
While negative values can be found over most regions in 

western TP and Qaidam Basin, where WRF9 simulates less 
net energy. ERA5 has less downward shortwave radiation as 
a result of cloud reflection and scattering caused by overesti-
mated precipitation over almost the whole TP. Nevertheless, 
ERA5 has more surface net energy in western TP, surface 
albedo may play a primary role in surface net absorbed 
shortwave radiation, which leads to more surface net energy 
in ERA5 in western TP.

Through considerable influence on the surface albedo, 
snow cover plays an important role in the surface energy 
balance (Xu et al. 2017b; Xie et al. 2019), which has direct 
effects on surface energy and temperature. Figure 12 shows 
the annual and winter mean snow cover over the TP from 
IMS satellite product, WRF9 experiment, and ERA5 rea-
nalysis and the differences in snow cover and surface albedo 
between WRF9 and ERA5. The snow cover fraction (SCF) 

Fig. 10  Diurnal cycle of precipitation amount (a, d, g, unit: mm/h), frequency (b, e, h, unit: 100%), and intensity (c, f, i, unit: mm/h) averaged 
over three subregions for IMERG, WRF9 and ERA5 (averaged over the grids in each subregion)
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is calculated using the snow depth data from the relation 
SCF = min (1, snow depth/10) in WRF9 and ERA5, where 
snow depth is in centimeters. WRF9 can well simulate the 
spatial pattern of SCF with the maximum SCF over western 
TP and TP-SE, but it overestimates the SCF over northern 
TP. ERA5 also can reproduce the maximum SCF over west-
ern TP and south-central TP, but it underestimates the SCF 
over northern TP. The difference in SCF between WRF9 
and ERA5 clearly shows the positive SCF deviation over 
northwestern TP, and the negative deviation over TP-SE, 
which is quite similar to the difference of surface albedo 
and surface net energy. There is little difference between the 
pattern of SCF and surface albedo, which may be due to the 
calculation method of SCF. Thus, it can be inferred that the 
difference in SCF between WRF9 and ERA5 may affect the 
surface albedo and surface net energy, which leads to the dif-
ference in surface temperature. WRF9 tends to simulate less 
SCF over TP-SE, resulting in the improvement of surface air 
temperature simulation.

It is found that surface albedo plays a major part in influ-
encing the simulated surface temperature, particularly in 
winter (You et al. 2020; Pang et al. 2022; Lin et al. 2020). 
GHFX plays a vital part in the improvement of Tmin. 
Although GHFX is very small in the long-term average, it is 
crucial in the adjustment of the energy diurnal cycle. GHFX 
from WRF9 is larger than that from ERA5 in the eastern and 
central TP, which leads to the rise of Tmin in those regions. 
Overall, more surface net energy leads to higher surface tem-
perature, which resulted in the improvement of the cold bias 
of T2m, Tmax and Tmin in WRF9 simulation over TP-SE.

4.2  Water vapor content and transport

The water vapor content and its transport are very crucial to 
the distribution of precipitation (Chen et al. 2019; Li et al. 
2016a; Yan et al. 2020). Figure 13 depicts the 20-year mean 
(2000–2019) distribution of annual and summer mean spe-
cific humidity at 450 hPa and vertically integrated water 
vapor transport from WRF9 and ERA5, and the differences 

Fig. 11  20-year mean distribution of annual and winter mean surface net energy ( (1 − ALBEDO) ∗ RSDS + RLDS − SHFX − LHFX ) from WRF 
(a, b), ERA5 (c, d) and the differences (e, f) between them, unit: W/m2
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between them. The WRF9 simulated spatial patterns of 
specific humidity at 450 hPa are in good agreement with 
that of ERA5, with high water vapor content over south-
ern TP and decreasing from south to north. Both WRF9 
and ERA5 show the main water vapor transport from the 

southern boundary and western boundary over the TP, 
especially in summer. The difference in specific humidity at 
450 hPa between WRF9 and ERA5 shows that WRF9 simu-
lates less water vapor content over most regions in the TP 
compared to ERA5, which is consistent with the difference 

Fig. 12  20-year mean distribution of annual and winter mean snow cover over TP from IMS (a, b), WRF (c, d) and ERA5 (e, f) and the differ-
ences of snow cover (g, h) and surface albedo (i, j) between WRF and ERA5, unit: 100%
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in precipitation distribution. And the negative deviation of 
specific humidity at 450 hPa in WRF9 simulation is mainly 
caused by less water vapor transport from the southern TP 
boundary. Previous studies (Lin et al. 2018; Wang et al. 
2020; Zhou et al. 2021) have shown that high horizontal 
resolution can resolve more orographic drag and other pro-
cesses associated with heterogeneous surface forcing, lead-
ing to weakened northward flow which also decreases the 
northward water vapor transport.

4.3  Main mechanism for the diurnal cycle 
of precipitation

The diurnal cycle of precipitation is an important aspect of 
regional climate, and the regular occurrence of precipitation 
at a specific time of day is related to physical processes that 
indicate strong convection during the specific time (Yang 

and Slingo 2001; Sorooshian et al. 2002). There are very few 
studies that explains the mechanism of the diurnal cycle of 
precipitation in TP. We will make effort to explore the pos-
sible mechanisms behind the diurnal cycle of precipitation. 
Generally, the occurrence time of maximum precipitation 
amount, frequency, and intensity in Fig. 10 is similar to that 
of Ou et al. (2020). We have additionally divided TP into 
three sub-regions to investigate the regional differences of 
precipitation diurnal cycle, which has not been done previ-
ously. There are several main factors that influence precipita-
tion: sufficient water vapor supply, fierce ascending motion 
to the supersaturated state, enough cloud condensation 
nuclei (CCD), and other factors. Figure 14 shows the 20-year 
mean distribution of water vapor mixing ratio at 2 m (Q2) 
and wind speed at 10 m (UV10) for WRF and ERA5 from 
1600 to 0200 LST with two-hour intervals, respectively. 
Over TP-SE, Q2 reaches its peak at 1600 LST, at which time 

Fig. 13  20-year mean distribution of annual and summer mean specific humidity at 450 hPa (shaded, unit: g/kg) and vertical integrated water 
vapor transport (vectors, unit: kg/(m*s)) from WRF (a, b), ERA5 (c, d) and the differences between them (e, f)
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Fig. 14  20-year mean distribution of anomaly of water vapor mixing ratio at 2 m (shaded, unit: g/kg) and wind speed at 10 m (vectors, unit: m/s) 
for WRF (a–f) and ERA5 (g–l) from 1600 to 0200LST with two-hour intervals
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the formation of convergence occurs, thus leading to ascend-
ing motion for ERA5. Thus, the peak time of precipitation 
amount over TP-SE occurs in late afternoon (1600–1800 
LST). In WRF9, TP-SE is controlled by fierce westerly and 
Q2 does not reach its peak at 1600 LST. Until 2000 LST, 
conditions favoring the formation of precipitation reflected 
with Q2 peak and water vapor convergence are satisfied. 
Therefore, the peak time of precipitation amount over TP-SE 
for WRF9 occurs at around 2000 LST. Over TP-C, where 
there is less Q2 compared to TP-SE, Q2 reaches its peak 
between 2200 and 0000 LST for WRF9, when precipitation 
is most likely to occur. But for ERA5, there are enough Q2 
at around 1800 LST over the eastern part of TP-C, and with-
out the strong controlled of westerly, precipitation occurs at 
around 1800 LST. As time goes on, the rain belt gradually 
moves westward, with the precipitation peak getting later 
towards the west, as is shown in Fig. 9c. The main cause 
leading to the difference of precipitation peak time between 
WRF9 and ERA5 over TP-C may be the representation of 
topographic features. There are more details about moun-
tains and valleys in WRF9 than in ERA5. The barrier effects 
of high mountains and the channeling effect of valleys are 
better exhibited in WRF9 (Lin et al. 2018). As is shown in 
Fig. 15, the peak time of Q2 over TP-C in WRF9 occurs 
at 0000 LST compared 1600 LST in ERA5. It may be the 
rough representation of terrain in ERA5 that caused Q2 to 
reach the precipitable condition earlier than in WRF9, not 
only in magnitude but also in transport speed. Over TP-SN, 
there are little differences of precipitation peak time between 
WRF9 and ERA5, except for the magnitude of precipitation.

5  Conclusion

A 20-year (2000–2019) dynamical downscaling simulation 
at the gray-zone resolution (9 km) using the WRF model 
driven by the ERA5 is conducted over the TP. The model’s 
ability in reproducing the long-term regional climate is 
evaluated compared to ERA5 through the assessment of the 
simulated surface air temperature and precipitation against 
in-situ observations and IMERG satellite precipitation prod-
uct. Also, possible reasons for model biases are discussed 
in this study.

Firstly, WRF9 improves annual and seasonal climato-
logical characteristics in terms of T2m, Tmax, Tmin, and 
precipitation against the driving data ERA5. Improvements 
include the reduced cold bias, especially for Tmax, and obvi-
ously reduced wet bias all year long. Secondly, the inter-
annual and seasonal variations of near-surface temperature 
and precipitation are also improved in WRF9. More spe-
cifically, winter cold biases and warm season wet biases are 
more obviously reduced, especially over TP-C and TP-SE. 
Thirdly, WRF9 better reproduces the precipitation intensity 
and significantly improved the simulation of precipitation 
frequency. Finally, the peak time and diurnal precipitation 
amount and intensity features over TP are better reproduced 
in WRF9 due to a more realistic topographical representa-
tion of high mountains and valleys.

The improvements in WRF9 are thought to be more real-
istically simulated surface net energy balance, snow frac-
tion, and water vapor content and transport due to better 
representation of topography. For near-surface temperature, 
more absorbed surface net energy heats the surface more 

Fig. 15  Time-latitude cross section of 20-year averaged diurnal precipitation from WRF9 (a) and ERA5 (b), averaged from 85° to 94° E (unit: g/
kg). The white dotted line shows the peak time of Q2 transporting to TP-C
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intensively than ERA5, leading to higher T2m which reduce 
the cold biases, especially over TP-SE. Less simulated snow 
fraction in WRF9 plays an important role in modulating the 
surface albedo, which also affects surface net energy and 
result in the improvement of surface air temperature simula-
tion. In terms of improved precipitation features, less water 
vapor transport from the southern boundary of TP attribut-
able to the better represented topographical features leads 
to lower specific humidity and water vapor content in the 
WRF9 simulation compared to ERA5, which is consistent 
with the difference in precipitation distribution between 
them, explaining the reduced wet bias in WRF9. The better 
represented topographical features such as high mountains 
and valleys and the finer resolution also resulted in the better 
simulated diurnal peak times of precipitation. The dataset 
produced by WRF9 still have some limitations. For exam-
ple, near-surface temperature simulation in spring and win-
ter is not satisfying enough compared to those in summer 
and autumn, especially for Tmin. Despite the improvement 
in precipitation frequency and intensity, WRF9 simulates 
slightly more precipitation events for precipitation intensities 
below 7.0 mm/day. Since the horizontal resolution used in 
this study is 9 km, which is still relatively sparse to represent 
the steep terrain in the south edge of TP, some features over 
there may not be fully represented. With finer resolution, 
the water vapor transport and the formation of precipitation 
are expected to be more realistically characterized. Moreo-
ver, due to the sparse distribution of in-situ stations in the 
western TP, it is difficult to fully reflect the added values of 
WRF9. Furthermore, there is only a single ensemble simula-
tion in our study, multiple ensemble simulations with differ-
ent parameterizations could be conducted in the follow-up 
work if computing resources are allowed.

On the basis of evaluation of WRF9’s ability in simulat-
ing the annual mean, inter-annual, and seasonal variation, 
daily and diurnal characteristics of surface air temperature 
and precipitation, WRF9’s added value is validated and 
understood more comprehensively. Promisingly, this will 
promote understanding of long-term climate conditions for 
better policy adaption over the TP and provide experience 
for future regional climate simulation at the gray-zone scale, 
even at CPM scale.
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