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ABSTRACT: Quality of a downscaling depends primarily on the quality of the driving global climate model (GCM). In
this study, historical atmospheric conditions simulated by 14 GCMs in CMIP5 are evaluated for downscaling applications
centred over the Tibetan Plateau (TP) with ERA-Interim reanalysis as reference. Another reanalysis NCEP-DOE is also used
to estimate the uncertainty associated with the reanalyses. Performances of six frequently used GCM variables, involving
atmospheric circulation, air temperature and humidity, are evaluated in terms of biases, spatial correlation coefficient, mean
absolute error as well as distinct seasonal features. To detect distributional biases, the two-sample Kolmogorov–Smirnov test
(KS test) is applied to both the original time series and their anomalies on the monthly scale. A spatial ranking scheme is finally
applied to objectively quantify overall relative merits of the GCMs over this region. We found that differences between two
reanalysis datasets are negligible over this region. Regarding the GCMs’ performances, the biases of the simulated variables
show remarkable differences among models. Sea level pressure and 500 hPa geopotential height are well simulated by all
the GCMs, whereas specific humidity at 600 hPa has a significant dry bias and temperature at 500 hPa has a sizable cold
bias. The spatial pattern of the upper-tropospheric circulation is relatively poorly simulated. The KS test suggests that the
climatic mean and higher order moments play about an equal role in causing the errors. According to the ranking scores,
CCSM4, CNRM-CM5, MPI-ESM-LR, NorESM1-M, MIROC4h, MPI_ESM_MR and CSIRO-MK are relatively superior to
other GCMs for this region.
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1. Introduction

The Tibetan Plateau (TP), termed as the roof of the world,
is the highest plateau in the world with an area proximal
2.5 million km2 and an average elevation above 4000 m.
As the source of several major rivers in Asia, the TP is also
called ‘water tower of Asia’ (Immerzeel et al., 2010), sup-
porting hundreds of millions of people in the downstream.
In recent decades, the TP has been experiencing more pro-
nounced warming than other regions at same latitude (Liu
and Chen, 2000; Rangwala et al., 2013), which has had a
significant impact on permafrost degradation (Wang et al.,
2000), glacial retreat (Yao et al., 2007) and desertification
(Xue et al., 2009). How climate over the TP will change in
the future is of great significance and receives much atten-
tion (Chen et al., 2015; Su et al., 2016).

Global climate models (GCMs) have provided valu-
able information on climate change and long-term
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climate projections at global to sub-continental scale
(IPCC, 2013). The World Climate Research Programme’s
(WCRP’s) Coupled Model Intercomparison Project
phase 5 (CMIP5) provides a state-of-the-art multi-model
dataset, which was used by the Intergovernmental Panel
on Climate Change (IPCC) for its fifth assessment report
on climate change. With improved models CMIP5 are
expected to perform better than those in the former
phase – CMIP3 (Taylor et al., 2012). Indeed, CMIP5
models have been found to have smaller bias than CMIP3
models in reproducing atmospheric downward longwave
radiation (Ma et al., 2014) and precipitation over China
(Chen and Frauenfeld, 2014). The same holds true for
simulation of East Asia monsoon characteristics (Sperber
et al., 2013; Wei et al., 2013) and El Niño-Southern
Oscillation (ENSO) (Bellenger et al., 2014). Although
CMIP5 models represent an improvement compared with
those of CMIP3, they still have remarkable biases in
depicting regional climate information. Previous studies
(Cattiaux et al., 2013; Chen et al., 2012; Su et al., 2013;
Chen and Frauenfeld, 2014) have identified large error
in the magnitude and trend of precipitation, surface air
temperature and 10-m wind speed over the TP and in
other regions. Almost all CMIP5 models suffer from a
common bias in the thermodynamic structure of boreal
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summer monsoons which is caused by an overly smoothed
representation of topography west of the TP (Boos and
Hurley, 2013). Further, CMIP5 models still exhibit some
biases in simulating both winter and summer East Asia
monsoon characters (Sperber et al., 2013; Wei et al.,
2013; Gong et al., 2014).

The horizontal resolution of most present-day GCMs is
in the order of a few hundred kilometres (Meehl et al.,
2007), which limits their ability to represent complex
topography, land surface characteristics and other pro-
cesses in the climate system. This prevents GCMs from
generating realistic and reliable climate change infor-
mation at fine scales, which is imperative for develop-
ing suitable adaptation and mitigation strategies at the
regional-to-local scale (Giorgi et al., 2009). Therefore,
downscaling GCMs outputs using either a regional cli-
mate model (RCM) or statistical downscaling model is
necessary and useful because they add value to the driving
GCMs (Feser et al., 2011; Gao et al., 2012; Soares et al.,
2012; Fan et al., 2013).

Downscaling are conducted based on the assump-
tion that GCMs can realistically reproduce large-scale
atmospheric characteristics, such as middle-tropospheric
temperature and humidity which are essential for down-
scaling (Brands et al., 2013). However, all GCMs surfer
from systematic biases to some extent, and RCMs or
statistical models could inherit these biases from their
driving GCMs. By comparing GCM-driven CRCM5
simulation with reanalysis-driven CRCM5 simulation for
Africa, Laprise et al. (2013) found that biases from GCMs
have deleterious consequences on the skill of CRCM5
at reproducing specific regional climate features. Four
GCM-driven RCM simulations were conducted for Africa
and the results show that the geographical distribution of
mean sea level pressure (SLP), surface temperature and
seasonal precipitation are strongly affected by the driving
GCMs (Dosio et al., 2014). This means that bias in the
driving GCM was to a large extent passed over to the
RCM output.

As for spectral nudging, large scales in the interior of
RCMs domain are nudged towards the coarse resolution
driving GCMs, the large-scale part of RCMs simulation
is essentially independent from the choice of the lateral
boundary treatment, location of the domain, size of the
domain or the resolution of the regional model. This sim-
plifies many problematic aspects of the lateral boundary
forcing and turns the complex problem of the traditional
dynamical downscaling into a much simpler one (Hong
and Kanamitsu, 2014). As a result, spectral nudging is
increasingly used in dynamical downscaling (e.g. Alexan-
dru et al., 2009; Heikkila et al., 2011; Xu and Yang, 2015),
which gives rise to more attention in GCM evaluation in
the interior of a RCMs domain. Statistical downscaling
can use local (e.g. GCM grid) or field (e.g. whole domain)
predictors (Benestad et al., 2008). The former would be
appropriate in regions with small biases, whereas the latter
may be more appropriate in regions with large bias (Gutiér-
rez et al., 2013). Given the important effect of GCM bias
on downscaling and strong desire of improving quality

of downscaling, bias of GCM should be identified and
assessed.

To reduce the RCM bias caused by GCM, some studies
(Bruyère et al., 2014; Xu and Yang, 2015) have performed
bias correction on the GCM boundary conditions. No
matter which downscaling scheme is chosen, it is a key
step to evaluate GCM and to select GCM with small bias
before a downscaling.

Previous studies (Xu and Xu, 2012; Su et al., 2013) have
evaluated the ability of GCMs in reproducing near sur-
face variables, such as near surface air temperature and
precipitation over the TP. However, from the point view
of downscaling, atmospheric variables at different lev-
els, such as SLP, mid-tropospheric humidity, temperature
and upper-tropospheric circulation, remain to be evaluated
over the TP and a larger domain. Herein, these variables
of the historical run in CMIP5 are assessed in compari-
son to ERA-Interim reanalysis (ERA-Int for short), which
is considered as the best among the most popular reanal-
yses to express the water cycle climatology and climate
change in the TP (Gao et al., 2014). As outlined by Brands
et al. (2012), reanalysis datasets also suffer from biases
and the difference between two distinct reanalysis datasets
is an effective and useful estimator of observational uncer-
tainty which hinders reliable validation of GCMs. Hence,
a comparison between ERA-Int and another reanalysis
(NCEP-DOE) is also made to indicate reanalysis uncer-
tainty over the study domain.

This work is arranged as follows: datasets and methodol-
ogy used are introduced in Section 2; results are presented
in Section 3; Section 4 summarizes and discusses the main
findings.

2. Data and methodology

2.1. Datasets and study domain

CMIP5 provides a state-of-the-art multi-model dataset,
which was applied in the Intergovernmental Panel on Cli-
mate Change (IPCC) Fifth Assessment Report (AR5) to
address some of the scientific questions that arose dur-
ing preparation of AR4 (Taylor et al., 2012). We intend
to evaluate a subset (14) of the GCMs in CMIP5 in this
study (Table 1). Air temperature, specific humidity, geopo-
tential height and wind are the main variables which are
used to constitute driving conditions in dynamical down-
scaling or used as predictor in statistical downscaling. Six
atmospheric variables (Table 2) at different vertical levels
are evaluated, including the SLP, (the same as the other
variables), the specific humidity at 600 hPa (Q600), the air
temperature and the geopotential height at 500 hPa (T500
and Z500), the wind components at 200 hPa (U200 and
V200), which are usually evaluated for dynamic downscal-
ing (Brands et al., 2013; Jury et al., 2015). In fact, these
variables were also frequently used in statistical downscal-
ing (e.g. Benestad et al., 2008).

SLP is a key variable for low-level wind, and the change
of SLP differences between the continent and sea is the
most evident indicator of evolution of East Asia winter
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Table 1. Information of the 14 GCMs used for evaluation.

Model name Institute Nation Resolution

CanESM2 CCCma Canada 2.8125∘ × 2.8125∘ L35
CCSM4 NCAR USA 0.9∘ × 1.25∘ L26
CNRM-CM5 CNRM France 1.4∘ × 1.4∘ L31
CSIRO-MK CSIRO Australia 1.875∘ × 1.875∘ L18
GFDL-CM3 GFDL USA 2∘ × 2.5∘ L48
GFDL-ESM2M GFDL USA 2∘ × 2.5∘ L24
GISS-E2-H NASA USA 2∘ × 2.5∘ L40
IPSL-CM5A-LR IPSL France 1.89∘ × 3.75∘ L39
MIROC4h MIROC Japan 0.5625∘ × 0.5625∘ L56
MIROC-ESM MIROC Japan 2.8125∘ × 2.8125∘ L80
MPI-ESM-LR MPI Germany 1.875∘ × 1.875∘ L47
MPI-ESM-MR MPI Germany 1.875∘ × 1.875∘ L95
MRI-CGCM3 MRI Japan 1.125∘ × 1.125∘ L48
NorESM1-M NCC Norway 1.875∘ × 2.5∘ L26

Table 2. Variables analyzed in this study.

Acronyms Description Unit

SLP Sea level pressure hPa
Q600 Specific humidity at 600 hPa g kg−1

T500 Temperature at 500 hPa K
Z500 Geopotential height at 500 hPa m2 s−2

U200 U-wind at 200 hPa m s−1

V200 V-wind at 200 hPa m s−1

monsoon (Wei et al., 2013). Precipitation over the TP is
strongly associated with vapour transportation which usu-
ally appears a maximum at 600 hPa for the TP. Owing
to the high altitude of the TP, variables at 500 hPa can
strongly affect near-surface variables over the TP. In
addition, the Western Pacific subtropical high, which is
an important synoptic system for East Asia, is usually
described using geopotential height at 500 hPa. Another
key synoptic circulation for the TP is the South Asia high
which usually hovers over the TP at 200 hPa (Yeh and Gao,
1979). The wind at that level is strongly affected by the
subtropical westerly jet stream which plays an essential
role in dynamical aspects of East Asia Summer Monsoon
(Feng et al., 2014).

The GCMs’ outputs of the historical runs are obtained
from the Earth System Grid Federation Portal (data are
available online at http://pcmdi9.llnl.gov/esgf-web-fe/).
GCMs datasets at monthly timescale were chosen in this
study, which may lead to some limitations of the results.
However, the major conclusion concerning the climatol-
ogy can be expected to remain valid, because GCMs per-
formance on the monthly timescale is correlated to model
performance on shorter temporal scales (Jury et al., 2015).

ERA-Int from the European Centre for Medium
Range Weather Forecast (ECMWF) (Dee et al., 2011)
is used as a reference for the evaluation. It is proved
to be the best among the widely available reanaly-
ses to describe the surface air temperature and water
cycle in the TP (Wang and Zeng, 2012; Gao et al.,
2014). NCEP-DOE AMIP-II (NCEP-DOE; Kanamitsu
et al., 2002) is compared with ERA-Int to estimate the

Figure 1. Study domain and topography (unit: m). The Tibetan Plateau
(TP) is circled in solid line. Black dots refer to the 2∘ × 2∘ grids.

uncertainty associated with the reanalyses. Datasets
of the two reanalyses are available online at http://
www.ecmwf.int/research/era/do/get/ERA-Interim and
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.
reanalysis2.html, respectively.

The study domain in this paper is limited to 20–50∘N
and 60–124∘E, mainly covering the East Asia (Figure 1).
This area is chosen to be much larger than the area occu-
pied by the TP (the boundary is indicated by the bold
line in Figure 1), which makes the study valuable for a
variety downscaling applications including those focused
on the TP (e.g. Xue et al., 2014). Given the distinct sea-
sonal climatology in the TP and different large-scale cir-
culation control over the south and north of the TP (Yao
et al., 2013), seasonal assessments for three areas [whole
TP (TP), to the north of 35∘N (North) and to the south of
the 35∘N (South)] in the study domain are considered in
the evaluation.

2.2. Methodology

As horizontal resolutions of the GCMs and reanalysis
products vary widely, ranging from 0.5625∘ to 3.75∘, all
datasets are regridded to a regular 2∘ × 2∘ grid by bilin-
ear interpolation – a commonly used regridding approach
used in model intercomparison and evaluation (e.g. Brands
et al., 2013; Laprise et al., 2013) to facilitate the evalua-
tion and comparisons. Annual and seasonal climatology
are evaluated by two statistics. The spatial correlation coef-
ficient (SCC) is used to quantitatively evaluate model’s
ability to capture spatial pattern, while mean absolute error
(MAE) is employed to indicate mean errors of the simu-
lation which are averaged over the whole domain. These
statistics are first calculated at monthly scale during the
period from 1979 to 2005, and then multi-yearly averaged.
Following the annual and seasonal climatology assess-
ment, the two-sample Kolmogorov–Smirnov test (KS test;
Wilks and Haman, 2006) is used to compare distributional
features of the two samples under the null hypothesis that
the samples are drawn from the same underlying theoret-
ical probability distribution. Herein, this test is conducted
between each GCM or NCEP-DOE and ERA-Int monthly
time series at each grid. To detect biases in high-order
moments, KS test is also applied to the anomalies of the
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two paired samples. Anomalies are obtained from origi-
nal series by subtracting monthly climatic mean at each
grid. The statistic is defined following Brands et al. (2013),
denoting that:

ks =
2n

max
i=1

|E (
zi

)
− I

(
zi

) | (1)

where n is 324 in this study, representing the number
of months during 1979–2005. The value of zi denotes
the ith data value of the sorted joined sample and E(zi)
and I(zi) are the empirical cumulative frequencies from
two samples. Commonly, the probability (p value) of the
test statistic according to null hypothesis is used to check
the distributional similarity. As usual, the 5% significance
level is chosen. Therefore, if p value is larger than 0.05, the
null hypothesis is accepted, which means that the distri-
butional difference is not significant at the 5% confidence
level. To better demonstrate the result, p value is trans-
formed to 10 based logarithms (Brands et al., 2013). As
a result, p value larger than −1.301 indicates that there is
a significant distributional similarity.

To quantify overall relative performance and give an
objective ranking of the 14 GCMs, a ranking method
focusing on spatial aspects are utilized for each variable.
The spatial ranking scheme is defined following Gettelman
et al. (2010) to evaluate spatial pattern, considering SCC,
spatial mean error (ME), and standard deviation (SD). This
method has been used in earlier studies to quantify rela-
tive performance of multi-models (Douglass et al., 1999;
Waugh and Eyring, 2008). A score based on monthly mean
data is defined as follows;

gm = max

(
0, 1 − 1

n

n∑
i=1

||𝜇iobs − 𝜇imod
||

ng𝜎iobs

)
(2)

where 𝜇 is the value of monthly mean from either a model
or observation, and n, representing the number of months,
is 324 in the study. 𝜎 is the SD calculated for each month,
ng is a scaling factor for observational SD, commonly set
to 3 (Douglass et al., 1999; Waugh and Eyring, 2008). The
value of gm ranges from zero to unity and if the model
difference from observation is greater than 3 times of the
SD, gm is set to zero. When model is definitely consistent
with observation, gm is unity. According to the above
description, the spatial ranking method is also applied to
another two statistics: gc for SCC and gv for SD. The
mathematical formulas following Gettelman et al. (2010)
are given as follows:

gc =

(
1
n

n∑
i=1

C
(
Viobs,Vimod

)
+ 1

)
∕2 (3)

where C means the spatial correlation coefficient between
modelled and observed climatologies.

gv = max

(
0, 1 − 1

n

n∑
i=1

||𝜎iobs − 𝜎imod
||

ng𝜎iobs

)
(4)

A composited mean score is then calculated as the linear
combination of the three scores: gsum =

(
gm + gc + gv

)
∕3.

The mean score representing uncertainty and inter-model
discrepancy (Gettelman et al., 2010) is finally used to rank
the models evaluated.

3. Results

3.1. Annual and seasonal biases

3.1.1. Annual performance

Figures 2–7, respectively show annual biases in six
variables of SLP, Q600, T500, Z500, U200 and V200
of the 14 GCMs compared with ERA-Int. Differences
between NCEP-DOE and ERA-Int are also shown in
Figures 2(o)–7(o) to indicate the uncertainty of the
reanalyses. Apparently, NCEP-DOE is in close agreement
with ERA-Int for all the six variables, with a minimum
MAE and maximum SCC compared with all the GCMs.
For four variables in the mid-upper levels including
T500, Z500, U200 and V200, SCC between NCEP-DOE
and ERA-Int are higher than 0.99. For most variables,
the differences between the two reanalyses within the
study domain are generally very small. But for Q600,
NCEP-DOE shows larger values over the TP and smaller
values at the south edge of the TP than those of ERA-Int.
Thus, we conclude that the uncertainty associated with
the reanalyses is quite small and practically negligible
over the study domain except for the specific humidity
over the TP. In fact, Gao et al. (2014) established that
ERA-Int presents the most reliable information about
the moisture over the TP among several other reanalyses
evaluated. Hence, ERA-Int is taken as the reference with
confidence to evaluate performances of the 6 variables in
the 14 GCMs in the following.

Figures 2(a)–(o) show the biases of SLP in the 14
GCMs against ERA-Int (Figure 2(p)). ERA-Int exhibits
a pronounced pressure gradient with high SLP in the
north and low values in the south of the study domain.
Biases of the SLP in the 14 GCMs range from −8.0
to 4.0 hPa. Most GCMs display larger biases in the
TP than the surroundings. CNRM-CM5 outperforms
other GCMs with the minimal MAE of 2.3 hPa and
the highest SCC of 0.89. SLP is underestimated by
five GCMs (CanESM2, CSIRO-MK, GFDL-CM3,
MPI-ESM-LR and MPI-ESM-MR) and overesti-
mated by six (CCSM4, IPSL-CM5A-LR, MIROC4h,
MIROC-ESM, MRI-CGCM3, and NorESM1-M) in the
TP. IPSL-CM5A-LR possesses the maximum MAE of
6.3 hPa and minimum SCC of 0.47.

Figure 3(a)–(o) display distribution of Q600 biases
of the GCMs and NCEP-DOE compared with ERA-Int
as well as Q600 climatology of ERA-Int (Figure 3(p)).
A wet centre is located to the southeastern TP in con-
trast to the arid northwestern TP in ERA-Int, most prob-
ably because of the water vapour transport by the South
Asian Summer Monsoon and East Asian Summer Mon-
soon. Most GCMs underestimate Q600, especially to
the south of the TP. Half of all the GCMs (CCSM4,
CNRM-CM5, GFDL-CM3, MIROC4h, MPI-ESM-LR,
MPI-ESM-MR and MRI-CGCM3) follow similar spatial
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Figure 2. Distribution of biases for surface level pressure SLP (unit: hPa) simulated by the 14 GCMs during 1979–2005 (a–n) and NCEP-DOE (o)
compared with ERA-int. The annual mean SLP climatology in ERA-Int is shown in (p). Numbers at top-right of each plot are monthly mean absolute

error (MAE) and spatial correlation coefficient (SCC), respectively.

Figure 3. The same as Figure 2, but for specific humidity at the 600 hPa Q600 (unit: g kg−1). Grey area represents missing data which is not available
when convert from the sigma coordinate to pressure coordinate because the model elevation is above the height of 600 hPa.

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 657–671 (2017)
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Figure 4. The same as Figure 2, but for air temperature at 500 hPa T500 (unit: ∘C). Grey area represents missing data.

Figure 5. The same as Figure 2, but for geopotential height at 500 hPa Z500 (unit: m2 s−2). Grey area represents missing data.

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 657–671 (2017)
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Figure 6. The same as Figure 2, but for zonal wind at 200 hPa U200 (unit: m s−1).

pattern as ERA-Int with SCC larger than 0.8. Four of them
(MIROC4h, MPI-ESM-LR, MPI-ESM-MR and CCSM4)
possess MAE less than 0.5 g kg−1. GISS-E2-H exhibits
substantial negative biases. The underestimation in the
annual Q600 to a large extent comes from the wet season
(Figure 9(b) and (h)).

Similarly, Figures 4 and 5 present biases distribution of
T500 and Z500 of the GCMs. GCMs show predominant
cold biases in T500 (Figure 4), which may be caused by
penetration of dry and cold air from the deserts of western
Asia due to an overly smoothed representation of topogra-
phy west of the TP (Boos and Hurley, 2013). Apart from
these cold biases, all the GCMs successfully reproduce the
spatial pattern with SCC larger than 0.95. With a relatively
small cold biases over the TP, MIROC4h and CCSM4 out-
perform other GCMs in terms of T500, with a MAE of
1.6 and 1.7 ∘C, respectively. Remarkable cold biases are
shown in GFDL-CM3, GFDL-ESM2M, MRI-CGCM3,
IPSL-CM5A-LR and GISS-E2-H with MAE bigger than
3.0 ∘C. In the case of Z500, CCSM4 and MIROC4h over-
estimate Z500 but the remaining GCMs underestimate it.
The five GCMs with relatively poor performance in T500
also show underestimation in Z500. Overwhelming neg-
ative biases appear in IPSL-CM5A-LR. Similar to T500,
the underestimation in annual Z500 to a large extent comes
from the cold season, while the slightly overestimation in
CCSM4 and MIROC4h mainly comes from warm season
(Figure 9).

Figures 6 and 7 present biases distributions of the
wind components at 200 hPa (U200 and V200). Wind

components in the GCMs are not simulated so well as
SLP, Z500 and T500. Large discrepancy exists in terms
of spatial pattern in the wind components, especially in
V200 with SCC less than 0.5 (Figure 7). CSIRO-MK and
CCSM4 possess higher SCC as 0.84 and 0.83 in U200, and
smaller MAE than other GCMs compared with ERA-Int.
GISS-E2-H, IPSL-CM5A-LR and MRI-CGCM3 show
poor performance in U200 with pronounced overestima-
tion to the south of the TP and underestimation to the north
(Figure 6). For V200, CSIRO-MK, IPSL-CM5A-LR and
MIROC-ESM present stronger northerly component than
ERA-Int in the TP, which comes from biases in winter
(Figure 9).

Owing to the complex topography in the TP, some of the
differences discussed so far may be because of the differ-
ences in the height representation in the models. Figure 8
shows the differences between the heights in the 14 mod-
els plus the NCEP-DOE and those used in ERA-Int. It is
interesting to note that most differences appear along the
boundaries of the TP where dramatic elevation changes
occur. Owing to the fairly big difference in the resolutions,
this type of differences is unavoidable. Another notable
feature is that the differences between the two reanalysis
models are comparable to those between the GCMs and the
ERA-Int model. Given that the differences of the six vari-
ables between the two reanalyses are generally negligible,
and there is no strong signal of the direct topographic influ-
ence on the simulated variables, the different topography
representations are not considered a major factor in the dif-
ferences among the models.

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 657–671 (2017)
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Figure 7. The same as Figure 2, but for meridional wind at 200 hPa V200 (unit: m s−1).

Figure 8. The same as Figure 2, but for topography (unit: m).

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 657–671 (2017)
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Table 3. Seasonal (JJA and DJF) mean errors (ME) of SLP (unit: hPa), Q600 (unit: g kg−1), T500 (unit: ∘C), Z500 (unit: m2 s−2), U200
and V200 (unit: m s−1) compared with ERA-Int for the 14 GCMs, GCM ensemble and NCEP-DOE in the TP during 1979–2005.

SLP Q600 T500 Z500 U200 V200

JJA DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA DJF

CanESM2 −5.08 0.79 −0.59 −0.16 −0.14 −1.26 10.91 −27.29 1.16 2.89 0.68 −0.84
CCSM4 0.34 2.81 −0.20 −0.04 0.48 −0.95 36.17 11.44 −0.51 0.28 0.88 −0.75
CNRM-CM5 −0.43 1.49 −0.76 −0.13 −1.54 −3.95 −6.47 −43.14 −2.22 −0.47 0.41 −0.52
CSIRO-MK −3.94 0.04 −0.36 −0.26 −0.33 −2.35 16.16 −37.77 −0.80 −1.03 0.68 −0.41
GFDL-CM3 −0.92 1.57 −0.64 −0.27 −3.04 −4.52 −18.65 −64.16 3.18 −0.21 0.60 0.46
GFDL-ESM2M 0.52 3.37 −0.64 −0.22 −2.93 −4.16 −20.04 −49.85 0.91 −1.64 0.51 −0.42
GISS-E2-H −0.47 −1.78 −1.53 −0.18 −3.65 −2.63 −34.20 −21.86 2.82 0.69 1.47 −0.11
IPSL-CM5A-LR 2.18 5.33 −0.69 −0.14 −2.39 −3.53 −41.85 −78.93 1.31 3.37 1.82 −0.92
MIROC4h 0.79 1.05 −0.22 −0.21 0.33 −1.49 32.65 −8.18 1.95 2.42 0.40 0.29
MIROC-ESM 1.16 3.38 −0.13 −0.05 −1.11 −3.12 9.66 −18.42 −2.43 −0.01 −0.07 −1.00
MPI-ESM-LR −1.50 −0.07 −0.03 0.00 −1.34 −2.09 −3.82 −20.87 0.25 −0.05 0.57 0.30
MPI-ESM-MR −1.53 −0.44 −0.04 −0.01 −1.30 −2.27 −3.43 −23.80 0.64 −0.15 0.53 0.19
MRI-CGCM3 1.72 3.11 −0.78 −0.16 −2.67 −3.63 −12.23 −58.20 1.58 1.83 1.23 −0.28
NorESM1-M 0.04 3.71 −0.45 −0.05 −1.11 −2.79 2.42 −14.18 −0.93 −0.88 0.56 0.10
NCEP-DOE 0.57 0.45 −0.14 0.14 −0.36 −0.22 11.42 1.56 −0.20 −0.28 −0.16 −0.24
ENS −0.51 1.74 −0.50 −0.13 −1.48 −2.77 −2.34 −32.52 0.49 0.50 0.73 −0.28

3.1.2. Seasonal variation

Most part of the study domain is dominated by different
monsoon systems in summer and winter, which results
in distinct circulations and climates in different seasons.
Thus it is interesting to evaluate GCMs’ performances
in simulating seasonal characters. Summer (JJA) and
winter (DJF) performance are separately evaluated. To
distinguish the biases with different sign between DJF and
JJA, the mean error (ME), rather than MAE, is used in
Table 3 and Figure 9.

3.1.2.1. Sea level pressure: Half of the GCMs under-
estimate (half slightly overestimate) SLP in the study
domain, causing a slight ensemble underestimation in
the JJA ME averaged in the domain (Table 3). Larger
biases exist over the TP than in the surroundings as seven
GCMs underestimate and IPSL-CM5A-LR overestimates
(Figure 9(a)). CNRM-CM5, CCSM4 and NorESM1-M
possess smaller biases than others (Table 3). However, the
top three in terms of the spatial correlation coefficient are
CNRM-CM5, CCSM4 and MRI-CGCM3 in JJA, follow-
ing NCEP-DOE (Table 4).

In winter, SLP is characterized by a strong land-sea pres-
sure gradient as the Siberian high located in the Eurasian
continent and a low pressure, the Aleutian low, over the
sea. Change of SLP differences between the continent
and sea is the most evident indicator of evolution of East
Asia winter monsoon (Wei et al., 2013). In contrast to the
summer, most GCMs overestimate SLP in winter, lead-
ing to an ensemble overestimation (Table 3). As the same
as in JJA, biases in the TP are larger than the surround-
ings. In fact, IPSL-CM5A-LR overestimates SLP in the
TP by about 40 hPa (Figure 9(g)). The enhanced land-sea
pressure gradient in GCMs results in a stronger low-level
northerly winds along the coast of East Asia than the
observations, which confirm what Gong et al. (2014) have
found. CSIRO-MK, MPI-ESM-LR and MPI-ESM-MR

outperform others in terms of the ME; while CNRM-CM5,
MPI-ESM-LR and MRI-CGCM3 perform better than oth-
ers in terms of SCC.

3.1.2.2. Specific humidity at 600 hPa (Q600): In sum-
mer, as Asia summer monsoon prevails in the East Asia
and South Asia, moisture is transported from the ocean
to the land, which results in higher Q600 in summer
than in winter, especially in the South domain. All the
GCMs underestimate Q600 in JJA (Table 3), particularly
to the south of the TP (Figure 9(b)), which is likely to
account for precipitation underestimation in the East Asia
(Sperber et al., 2013) and South Asia (Boos and Hurley,
2013). All the model simulations show large spread in
ME from −0.03 to −0.78 g kg−1 (Table 3) and SCC from
0.77 to 0.89 (Table 4) in the study domain. MPI-ESM-LR,
MPI-ESM-MR, MIROC-ESM and CCSM4 relatively out-
perform others in terms of ME and SCC. For Q600, the
whole TP is above the 600 hPa for eight GCMs, which
may reduce the Q600 mean absolute errors of these GCMs
because of the missing values set in the TP. However, it will
not strongly affect the inter-comparison results because
the area with missing values is relatively small and Q600
biases mostly occur to the south of 35∘N.

The values of Q600 and biases are smaller in winter than
in summer. NCEP-DOE overestimates Q600 over the TP,
which points to an important uncertainty associated with
reanalysis. Similar to the ensemble dry bias in JJA, an
ensemble dry bias also exists in DJF but with much smaller
magnitude than that in JJA (Figure 9(h) and Table 3). DJF
possesses smaller ME and SCC than JJA, which means that
most GCMs have serious limitation in reproducing spatial
pattern of Q600 in winter when the moisture content is low.
MPI-ESM-LR, MPI-ESM-MR and CCSM4 outperform
others in terms of ME.

3.1.2.3. T500 and Z500: Spatial distributions of T500
and Z500 for all the 14 GCMs are highly correlated with
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Figure 9. Seasonal (JJA and DJF) biases for SLP (unit: hPa) (a, g), Q600 (unit: g kg−1) (b, h), T500 (unit: ∘C ) (c, i), Z500 (unit: m2 s−2) (d, j), U200
(unit: m s−1) (e, k) and V200 (unit: m s−1) (f, l) averaged over the TP (TP), to the south of 35 ∘N (South) and to the north of 35 ∘N (North) in the

study domain. Grey bars represent missing value over the TP.

those of the ERA-Int. All the SCCs are higher than 0.9
(Table 4). The ensemble means of all the models for both
variables are underestimated in JJA and DJF (Table 3).
The biases in DJF are larger than those in JJA. CanESM2,
MIROC4h, CSIRO-MK and CCSM4 have smaller ME for
T500 in the study domain (Table 3). CCSM4 performs
better than the others as it exhibits small biases for T500
outside of the TP. MIROC4h and CCSM4 have better
performance in DJF for Z500 than the others.

In summer, the western Pacific subtropical high hovers
overhead the East Asia. Meanwhile, due to the heating
of the TP, a warm centre appears in the southern TP. It

constitutes a strong south-northward gradient in geopo-
tential height at 500 hPa. The majority of the GCMs have
cold biases in JJA except for CCSM4 and MIROC4h. The
underestimation of T500 in JJA in the south (Figure 9(c))
may be partly related to the reduced precipitation in the
South Asia (Boos and Hurley, 2013) and the resultant
reduction of latent heat from condensation, while inva-
sion of cold air from the high latitude may result in
cold biases in the north in DJF (Gong et al., 2014). Most
GCMs show larger cold biases in the north than south
in DJF (Figure 9(i)). All the GCMs possess large nega-
tive biases in Z500 except for CCSM4 in DJF (Figure 9(j)
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Table 4. Seasonal (JJA and DJF) spatial correlation coefficient (SCC) of SLP, Q600, T500, Z500, U200 and V200 with ERA-Int for
the 14 GCMs, GCM ensemble and NCEP-DOE in the TP during 1979–2005.

SLP Q600 T500 Z500 U200 V200

JJA DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA DJF

CanESM2 0.16 0.83 0.81 0.70 0.95 0.98 0.93 0.98 0.90 0.84 0.39 0.59
CCSM4 0.86 0.73 0.88 0.68 0.96 0.97 0.92 0.98 0.90 0.87 0.40 0.59
CNRM-CM5 0.89 0.90 0.86 0.78 0.96 0.98 0.92 0.98 0.90 0.87 0.42 0.65
CSIRO-MK 0.37 0.85 0.84 0.66 0.96 0.98 0.92 0.97 0.89 0.88 0.44 0.68
GFDL-CM3 0.43 0.84 0.87 0.72 0.96 0.98 0.94 0.97 0.88 0.87 0.35 0.65
GFDL-ESM2M 0.38 0.80 0.87 0.63 0.96 0.98 0.94 0.98 0.90 0.84 0.37 0.60
GISS-E2-H 0.71 0.77 0.68 0.70 0.92 0.97 0.86 0.97 0.77 0.85 0.14 0.63
IPSL-CM5A-LR 0.76 0.16 0.80 0.67 0.92 0.98 0.90 0.97 0.74 0.85 0.38 0.60
MIROC4h 0.82 0.71 0.89 0.71 0.96 0.98 0.93 0.98 0.90 0.87 0.34 0.66
MIROC-ESM 0.55 0.34 0.77 0.57 0.91 0.97 0.91 0.97 0.86 0.87 0.24 0.57
MPI-ESM-LR 0.29 0.88 0.90 0.69 0.96 0.98 0.93 0.98 0.90 0.86 0.39 0.65
MPI-ESM-MR 0.30 0.85 0.89 0.70 0.96 0.98 0.94 0.97 0.90 0.86 0.41 0.59
MRI-CGCM3 0.86 0.86 0.80 0.76 0.95 0.97 0.93 0.97 0.86 0.87 0.41 0.62
NorESM1-M 0.81 0.80 0.87 0.69 0.96 0.97 0.93 0.97 0.91 0.87 0.41 0.60
NCEP-DOE 0.91 0.93 0.92 0.87 0.99 1.00 1.00 1.00 1.00 1.00 0.98 0.99
ENS 0.59 0.74 0.84 0.69 0.95 0.98 0.92 0.97 0.87 0.86 0.36 0.62

and Table 3). Underestimation in Z500 is highly related to
the underestimation in T500. The underestimation is much
pronounced in the North than the South, which means a
weak western Pacific subtropical high for most GCMs.
It is responsible for underestimation of summer rainfall
intensity as indicated by Feng et al. (2014). The increased
thermal gradient and the north-south geopotential height
gradient enhance the westerly in the North (Figure 9(k))
and result in a slightly stronger westerly jet stream in the
winter (Gong et al., 2014). There are also strong underesti-
mations over the climatological East Asian trough region,
which means a deeper East Asian trough in the GCMs than
in ERA-Int (Gong et al., 2014).

3.1.2.4. Wind components: U200 in summer and win-
ter shows contrasting spatial climatology patterns in the
Asia monsoon region, especially over the TP. Summer is
characterized by relatively weak westerly in the North and
easterly in the South. Contrary to summer, winter is char-
acterized by strong westerly covering the whole domain,
with a centre on the south of TP. And there exists a strong
westerly jet stream over the East Asia, called the East Asia
westerly jet. In summer, the southerly prevails in the west
of the study domain and northerly in the east because the
South Asia high located in the upper troposphere dom-
inants the Asia summer monsoon region. In winter, the
southerly prevails to the south of the TP due to the Hadley
circulation. The GCMs capture the spatial pattern of the
zonal component better than the meridional one in JJA and
DJF (Table 4), which indicates that there is more room for
improvement of the monsoon dynamics over Asia.

Nine GCMs overestimate and five underestimate U200
in JJA (Table 3). Overestimation in the South and under-
estimation in the North in JJA (Figure 9e) indicate that
the easterly in the South and the westerly in the North are
both underestimated, which may be related to the underes-
timation of the South Asia High in the southern TP (Duan
et al., 2013). MPI-ESM-LR, CCSM4 and MPI-ESM-MR

outperform other GCMs with smaller ME and higher SCC.
In DJF, most GCMs overestimate U200 in the TP and
the South and slightly underestimate U200 in the North
(Figure 9(k)).

Pattern of the meridional component (V200) shows con-
sistence between NCEP-DOE and ERA-Int (Figures 8(f)
and (l)). However, it is not well reproduced by the GCMs
in JJA with SCC ranging from 0.14 to 0.44 (Table 4 and
Figure 9(f)). All the GCMs overestimate the southerly
in the study domain, practically in the South of the
TP except MIROC-ESM. It is noted that GISS-E2-H,
IPSL-CM5A-LR and MRI-CGCM3 suffer from large
biases (higher than 1 m s−1). In DJF, nine GCMs underes-
timate the southerly (Table 3). The overestimation in JJA
and underestimation in DJF suggest that the strength of
the monsoon circulation is overstimulated in the majority
of the GCMs.

3.2. KS test

Following the spatial characteristics of climatology eval-
uation for the six variables, we assess the distributional
similarity by the KS test.

Table 5 shows NCEP-DOE presents similar distribu-
tion with ERA-Int in most of the domain as the grid
number with significant distributional difference is less
than 200 for most variables. At mid-troposphere, reanal-
ysis uncertainty is very small for T500. Regarding Z500,
significant distributional differences are detected over the
southern region, but these differences are significantly
reduced when the anomalies were used to the same analy-
sis. At the upper troposphere, reanalysis uncertainties for
U200 and V200 are negligible with almost no significant
difference in the whole domain. In spite of the general
similarity, considerable differences are found for SLP and
Q600 over the TP and adjacent southwestern edge (figure
not shown). In general, uncertainty in reanalyses for all the
six variables outside the TP is generally negligible. The
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Table 5. The number of grids at which P value in logarithm of the KS test is less than the threshold −1.301 for original time series
(ORG) and anomalies (ANO) of 6 variables in 14 GCMs and NCEP-DOE, indicating the distributional difference is significant at

the 5% confidence level (The total grid number is 528).

SLP Q600 T500 Z500 U200 V200

ORG ANO ORG ANO ORG ANO ORG ANO ORG ANO ORG ANO

CanESM2 486 322 445 305 459 203 451 346 449 167 362 129
CCSM4 416 180 242 163 369 314 527 269 284 142 320 40
CNRM-CM5 245 112 449 373 528 351 508 363 238 37 305 3
CSIRO-MK 442 296 336 213 447 232 443 469 365 45 363 96
GFDL-CM3 342 194 437 296 528 222 528 405 396 72 341 43
GFDL-ESM2M 515 244 400 269 528 246 528 247 277 37 294 62
GISS-E2-H 428 267 464 449 528 280 494 224 453 157 433 223
IPSL-CM5A-LR 417 244 306 312 528 233 528 473 436 64 387 182
MIROC4h 375 103 276 134 314 234 471 369 312 30 308 117
MIROC-ESM 456 259 398 348 510 313 396 342 328 190 411 118
MPI-ESM-LR 279 158 301 218 480 114 225 140 327 69 289 17
MPI-ESM-MR 308 182 364 184 492 181 200 195 329 49 240 22
MRI-CGCM3 432 157 380 355 528 243 518 384 495 73 297 98
NorESM1-M 425 280 348 322 499 325 232 170 384 156 362 46
NCEP-DOE 198 87 241 197 53 14 253 41 2 0 11 0

GCMs mainly exhibit pronounced differences at low lev-
els. At the upper troposphere, much smaller differences
than low levels are detected in the GCMs compared with
ERA-Int (Table 5). Compared with other variables, U200
and V200 suffer from smaller distributional biases, par-
ticularly in high order moments. Uncertainty associated
with reanalyses in SLP and Q600 over the TP will leave
adverse impacts on GCMs evaluation and eventual down-
scaling. In contrast to the TP, reanalysis uncertainty outside
the TP is generally negligible. GCMs’ performance can be
reliably assessed against ERA-Int with high confidence.
Subsequently, we analyze the performances of the GCMs
to detect which region suffers from distributional biases
and whether these differences originate from the mean or
higher order moment biases.

In the case of SLP, five GCMs, namely CNRM-CM5,
GFDL-CM3, MIROC4h, MPI-ESM-LR and
MPI-ESM-MR, suffer from smaller distributional biases
for original series, especially in the eastern Asia (figure not
shown). Pronounced differences in high-order moments
calculated from anomalies are still revealed in the TP for
most GCMs, which is consistent with remarkable biases
found in Figure 2.

Compared with SLP, biases for Q600 are generally
more evident and widespread, and the spatial patterns are
considerably diversified among models (Table 5). While
GFDL and MPI models share similar pattern for anoma-
lies, MIROC4h and CCSM4 outperform other models as
they do not have significant distributional biases outside
the TP (figure not shown). Significant distributional biases
exist in the TP for original series in all the GCMs, but
they are largely removed in anomalies for nine GCMs with
exception of small area in the north TP, which is also in
accordance with the biases depicted in Figure 3.

In the mid-troposphere, notable distributional differ-
ences are found for T500 in all GCMs and cover almost
the whole domain (figure not shown), whereas CCSM4
and MIROC4h outperform the remaining models as they

do not suffer from pronounced biases in the north. Biases
in high-order moments are largely reduced and mainly
located in the south, especially for MPI-ESM-LR and
MPI-ESM-MR, which suggests that distributional biases
mainly result from climatic cold biases. With regard to
Z500, biases appear over most of the domain except for
Nor-ESM1-M, MPI-ESM-LR and MPI-ESM-MR as they
only generate biases in the southwest (figure not shown).
Most GCMs exhibit striking distributional biases over
India for Z500 anomalies.

In general, for all the variables evaluated, considerable
distributional differences are detected but the differences
are reduced by about half in almost all the GCMs when the
anomalies are considered, which suggests that the errors
are partly caused by biases which in turn are associated
with a shift of climatic mean and partly by higher order
moments. This is different compared twith the regions in
Europe and Africa (Brands et al., 2013), which may be
attributed to the highly heterogeneous land surface over
the TP.

3.3. Ranking scores

The spatial ranking scores are calculated based on the
spatial correlation efficient (SCC), ME and SD of the six
variables, and the results are presented in Figure 10. As
shown in Figure 10(a), all the models have comparably
high-spatial SCC for Z500 and T500 but lower values for
V200. As shown in Figure 10(a)–(c), scores of SCC and
SD for V200 are smaller than those of ME, which indicates
that all the GCMs have large errors in reproducing spatial
pattern of V200, whereas they are able to reproduce mean
value which is mainly due to offsets between negative and
positive errors.

To further examine the difference in model performance,
we compare the mean scores averaged over the three
quantities for each variable (Figure 10(d)). Performance
of most models is reasonable for Z500 and T500, fol-
lowed by U200, Q600 and SLP, but relatively poor for
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Figure 10. Spatial ranking scores for (a) spatial correlation efficient (SCC), (b) spatial mean error (ME), (c) standard deviation (SD) and (d) mean
scores of six variables from 14 GCMs. The penultimate column represents mean ranking scores averaged over six variables and the last column is

the ranking according to the mean ranking scores in each panel.

V200. Although no model performs best or worst at all
aspects, we can determine overall skills of the models
for the study domain with help of the averaged ranking
scores. In general, seven top GCMs including CCSM4,
CNRM-CM5, MPI-ESM-LR, NorESM1-M, MIROC4h,
MPI_ESM_MR and CSIRO-MK are identified, with a
composited mean score of 0.92. The four relatively poor
models are GFDL-ESM2M, MRI-CGCM3, GISS-E2-H
and IPSL-CM5A-LR.

4. Summary and conclusions

Downscaling is a frequently used approach to get regional
or local scale climate information. However, GCMs could
pass over their errors to the downscaling results through the
large-scale forcing. Therefore, identifying and understand-
ing GCM’s error for large-scale variables used in down-
scaling is critical to a successful downscaling. In this study,
five upper level and one low level atmospheric variables
including sea level pressure (SLP), Q600, air temperature
and geopotential height at 500 hPa (Z500 and T500), wind

components at 200 hPa (U200 and V200), in 14 GCMs
of CMIP5 are evaluated over the TP and its surround-
ings. ERA-Int, which is proven to outperform several other
reanalyses in the study region, is used as the reference
for the evaluation. Differences between NCEP-DOE and
ERA-Int are analyzed to indicate the uncertainty in the
reanalyses. The evaluation focuses on spatial characteris-
tics of annual and seasonal biases and distributional fea-
tures which are checked by the KS test. Finally, a spatial
ranking scheme is used to identify relatively more skillful
GCMs for downscaling in this region.

Uncertainty associated with reanalysis as expressed
by the differences between the two reanalyzes is quite
small except for the specific humidity at low level in the
study region. ERA-Int possesses the best performance
in water cycle climatology and changes in the TP com-
pared with several other reanalysis products (Gao et al.,
2014) because it utilizes four-dimensional variational data
assimilation (Dee and Uppala, 2009). Moreover, more
observations of temperature and humidity are used in
ERA-Int than in NCEP-DOE. These advantages may have
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made ERA-Int superior to NCEP-DOE for the above six
variables over the TP, which ensures the accuracy and
reliability in GCMs assessment using ERA-Int as the
reference over this region.

Spatial patterns for wind components, especially for
V200, are not well simulated by all the GCMs. Distinct
seasonal features in V200 are detected with overestima-
tion in JJA over the TP, and underestimation in the South
of the TP in DJF, which most likely has a strong impact
on large-scale synoptic systems over the TP, especially the
monsoon circulation. Remarkable cold biases are detected
in T500 in most GCMs, especially in DJF, which led to the
underestimation in Z500, underestimation in U200 in the
North and overestimation in the South. Q600 is underesti-
mated in the TP and pronouncedly underestimated in the
southeast of the TP in JJA.

For distributional feature, closer agreements are found at
200 hPa than lower levels. Variables at the low levels pos-
sess more discrepancy compared with ERA-Int, especially
for Q600. All the GCMs surfer from pronounced distri-
butional biases for original datasets but these biases are
significantly reduced when anomalies are applied in the
KS test, suggesting the biases are mainly due to a climatic
mean shift.

The spatial ranking scores show that CCSM4,
CNRM-CM5, MPI-ESM-LR, NorESM1-M, MIROC4h,
MPI_ESM_MR and CSIRO-MK are over other seven
in terms of the spatial correlation efficient, ME, and
SD averaged over the six variables in the study region.
These models may be prioritized in further downscaling
applications for this region.

It is worth noting that none of the GCMs performs
absolutely best or worst at all aspects, although four
GCMs stand out in terms of their scores for simulating
the six atmospheric variables. As GCMs incorporate sev-
eral components describing atmospheric, oceanic, land and
cryospheric climate system components, it is not feasible
to evaluate GCMs performance at all aspects concurrently.
Therefore, it is hard to select a definitely best GCM as
it may be good at certain aspects but have shortcomings
in others, which have been pointed out by many previous
studies (Sheffield et al., 2013a, 2013b; Su et al., 2013; Ou
et al., 2013). Even for a specific variable, performance of a
GCM can be remarkably different depending on the region
selected (e.g. Sheffield et al., 2013a).
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