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A B S T R A C T   

Climate change has caused more frequent instances of extreme climatic events around the world, being an 
influential factor on the occurrence of wildfires in China on large scale. However, the impact of changes in 
extreme climate on the occurrence of wildfires in different climate zones remains unclear. In the present study, 
26 extreme climate indices were selected to analyze the thereof relationship with wildfire occurrences from 2005 
to 2018 in different regions of China. Wildfires in China primarily occur in the south, with a measurable presence 
in the north. On an annual scale, the wildfire occurrences in southwestern China show stronger correlations with 
mean temperature than extreme temperature indices, but show stronger correlations with extreme precipitation 
indices than the total precipitation. On the contrary, the wildfire occurrences in southeastern China show 
stronger correlations with the total precipitation than extreme precipitation indices, but show stronger corre
lations with extreme temperature indices than the mean temperature. In Northeast China, wildfires show a more 
significant correlation with mean temperature than with any extreme climate indices, indicating a minimal 
impact from extreme climatic conditions. The fire-climate relationships in the main fire season (January-April) 
are similar to those in the annual scale. The wildfire occurrences in the southwestern, south-central, and 
southeastern China, which are located in the same latitudes, were affected by extreme climate indices of different 
types and on different time scales. Furthermore, we recommend that consecutive dry days (CDD) and diurnal 
temperature range (DTR) should be considered first when studying the relationship between wildfire occurrence 
and extreme climate in southwestern and southeastern China respectively.   

1. Introduction 

Wildfire is a significant factor in ecological succession, affecting the 
patterns and processes of global ecosystems, such as the distribution and 
structure of vegetation, carbon cycles, and climate (Cochrane, 2003; 
Loboda and Csiszar, 2007; Bowman et al., 2009). Due to being sudden, 
destructive, uncontrollable, and difficult to manage, wildfires generally 
cause large-scale devastation (Bowman et al., 2009; Kelly et al., 2013). 
Thus, in coexistence with wildfires, human beings need to determine the 
influencing factors thereof and understand the mechanisms of occur
rence and development of wildfires (Moritz et al., 2014; McWethy et al., 
2019). In previous studies, global warming has been predicted to 

facilitate wildfires in the short and long terms, as wildfires increase in 
frequency and severity (Randerson et al., 2006; Bond-Lamberty et al., 
2007; Turetsky et al., 2011; Lu et al., 2016; Davis et al., 2019; Walker 
et al., 2019). Such findings suggest that the potential danger of wildfires 
will likely exacerbate across the globe, and the severity will also 
significantly increase (Liu et al., 2010). In addition to determining the 
flammability of fuels, climate will also influence the availability of fuels 
in the future (Marlon et al., 2008; Trouet et al., 2010). As such, as a 
principal large-scale driver of wildfire variability, climate profoundly 
impacts the occurrence and development of wildfires (Flannigan et al., 
2009; Ganteaume et al., 2013). Therefore, knowledge concerning the 
connections between wildfires and climate change is of considerable 
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significance for preventing and responding to wildfires (Doerr and 
Santín, 2016; Prichard et al., 2017). 

Rapid climate warming is the general trend of current climate change 
(Masson-Delmotte et al., 2021), and climate extremes have occurred 
frequently (Zhang et al., 2006), inevitably exerting a significant impact 
on wildfires (Tian et al., 2013). For instance, extreme high temperatures 
and droughts undoubtedly promote the outbreak and spread of wild
fires, making the study of extreme climate changes crucial for wildfire 
research. Existing research has been focused on the relationship between 
local climate and wildfire behavior in the context of climate change, the 
impact of individual extreme events on wildfires, and the application of 
social science to fire management. Despite such research, there is a 
scarcity of studies in which extreme climate indices and wildfires are 
correlated on large spatial scales and comprehensive analyses are con
ducted. Under the background of increasing extreme climate and 
weather events, although there are difficulties in capturing the regu
larity between extreme climate and wildfire through several indepen
dent extreme weather events, the use of the extreme climate index in 
wildfire research is novel and effective. The development of research on 
global extreme weather and climate events has been hindered by a lack 
of consistent definitions regarding extreme event indicators and 
thresholds in individual countries, as well as limitations imposed by the 
length of global climate data series. Importantly, the Expert Team on 
Climate Change Detection and Indices (ETCCDI), which was established 
by the World Meteorological Organization (WMO) and the World 
Climate Research Program (WCRP) in 1999, defined 27 representative 
climate indices for the study of global and regional extreme climate 
change. These indices were divided into different types such as the in
tensity index, absolute threshold index, relative threshold index, dura
tion index (Zhou et al., 2016; Yin and Sun, 2018a, 2018b), which can 
promote the observation and research of global extreme climate change 
and accelerate the pace of extreme climate change simulation and 
attribution research (Alexander et al., 2006; Donat et al., 2013a, 2013b; 
Kim et al., 2016; Yin and Sun, 2018a). It also provides a basis for further 
studying the relationship between extreme climate and wildfire. 

China covers a broad spectrum of latitudes and longitudes, resulting 
in a diverse range of climate and vegetation types. Particularly, the 
subtropical regions of China boast some of the world’s most verdant and 
dense subtropical forests (Crowther et al., 2015). The predominance of 
wildfire occurrence in southern, subtropical China stands in contrast to 
the dominant fire patterns in both southern and northern China found in 
previous studies, which were primarily based on fire size (Wang and 
Shu, 2015; Ying et al., 2018). Therefore, conducting research on the 
relationship between extreme climate and wildfire occurrences in this 
region is of great significance. Thus, in this study, the core 26 of the 27 
indices of extreme climate recommended by ETCCDI were considered 
for analyzing the relationships thereof with wildfires in different regions 
and seasons in China, and further, the relationships between extreme 
climate indices – wildfire and between mean temperature/precipitation 
- wildfire were compared, aiming to answer the following questions: (1) 
What has been the relationship between extreme climate and wildfires 
in China during the period from 2005 to 2018? (2) Are there differences 
in the responses of wildfires to various types of extreme climate indices 
in different regions of China? If so, what are these differences? (3) How 
does the relationship between wildfires and climate extremes compare 
to that with mean temperature/total precipitation in China? should 
extreme climate factors be more emphasized in future wildfire research 
in China? 

2. Data sources and research methods 

2.1. Wildfire dataset and extreme climate indices 

The wildfire data in the present study include vegetation fire data 
from 2005 to 2018 provided by the Forest Fire Prevention and Moni
toring Information Center (FFPMIC) polar-orbiting satellite wildfire 

monitoring system. Wildfire Atlas of China (WFAC) is a data product 
compiled by the FFPMIC that combines satellite images and field ob
servations, including the locations, dates, and times of 135,246 wildfires 
in China from 2005 to 2018 (Fang et al., 2021). According to the FFPMIC 
data, the ground-truth-calibrated WFAC data set for fire occurrences is 
different from other satellite-based fire counting products. 

The data concerning the extreme climate index were obtained from 
the HadEX3 gridded global surface extremes indices datasets released by 
the Met Office Hadley Centre (Dunn et al., 2014; Dunn et al., 2020). The 
dataset records land-based climate extremes produced through the co
ordination of the joint ETCCDI, which currently contains 27 temperature 
and precipitation indices on a 1.25◦ × 1.875◦ grid system from 1901 to 
2018. Such indices represent seasonal, annual or both values derived 
from daily weather station data, and the data are provided in the form of 
a calculated ETCCDI index or a time series of standardized maximum 
temperature (Tmax), minimum temperature (Tmin), and daily precipita
tion values at each station. For each index, the Hadley Centre only se
lects sites with sufficient data and coverage and performs several quality 
controls to confirm that the indices of the interest are free of errors, 
while further screening is performed on data provided by duplicate sites. 
Such method can prevent mixing of metadata with the same content but 
in different formats, resulting in biased results. In the present study, 26 
indices from the dataset (Table 1) were used, and the indices were 
calculated from the Tmax, Tmin, and daily precipitation records of 317 
weather stations in China. Additional details can be obtained from 
https://www.metoffice.gov.uk/hadobs/hadex3/. 

2.2. Methods 

The annual and the monthly numbers of wildfire events in the 2◦ × 2◦

grid of the WFAC wildfire data set for 14 years were calculated, as well 
as wildfire occurrences before (January to April), during (May to 
September), and after (October to December) the monsoon season of 
each year (Fig. S1). Given the increasing stringency of fire control pol
icies in China over time, there has been a general decline in the number 
of wildfires (Fig. S2), reflecting the influence of these policies. To 
address the potential linear trends or systematic variations inherent in 

Table 1 
List of indices acronyms and descriptions.  

Acronyms Descriptions Unit Type 

TXx maximum Tmax ℃ Monthly extreme temperature 
indices TXn minimum Tmax ℃ 

TNx maximum Tmin ℃ 
TNn minimum Tmin ℃ 
DTR diurnal temperature range ℃ 
TX90p warm days % 
TX10p cool days % 
TN90p warm nights % 
TN10p cool nights % 
SU summer days day Annual extreme temperature 

indices FD frost days day 
ID ice days day 
CSDI cool spell duration day 
WSDI warm spell duration day 
TR tropical nights day 
GSL growing season length day 
Rx1day maximum 1 day total mm Monthly extreme precipitation 

indices Rx5day maximum 5 day total mm 
R95p number of very wet days day Annual extreme precipitation 

indices R99p number of extremely wet 
days 

day 

R10mm ≥10 mm precipitation 
days 

day 

R20mm ≥20 mm precipitation 
days 

day 

CDD consecutive dry days day 
CWD consecutive wet days day 
PRCPTOT total precipitation mm 
SDII specific daily intensity mm  
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the data, particularly those associated with fire control policies, the first- 
difference series method was employed. This technique computes the 
differences between consecutive observations, effectively mitigating the 
influence of any linear trends. By adopting the first-difference approach, 
the data was rendered more stationary, enhancing the precision of 
subsequent analyses. To further remove the trend effect of fire control 
policies, the raw wildfire event series grouped by monsoon season was 
simultaneously computed to obtain the first-difference series, and the 
same calculation process was performed for annual-scale wildfire 
events. A point-to-point correspondence between wildfire grid points 
and extreme climate index grid points was established, upon which the 
extra grids of extreme indices were deleted. Subsequently, the nearest 
interpolation was used to fill in the missing grids of the extreme indices. 

The climate index data in the HadEX3 datasets were classified using 
annual and monthly scales, and data in the range of 75◦E-135◦E and 
15◦N-55◦N were selected, which covered the study area. The original 
datasets had a resolution of 1.25◦×1.875◦ grid points, the nearest 
interpolation method was used to convert that resolution to 2◦×2◦ grid 
points. The monthly index data were divided into three groups: pre- 
monsoon season (January to April), monsoon season (May to 
September), and post-monsoon season (October to December), and the 
data for each group were averaged over the target time period. To obtain 
the first-order difference series of 26 indices, the first-order difference of 
the monthly exponential time series in each grid point was calculated, as 
well as the annual mean of each annual index. The temperature and 
precipitation data are from the China Climate Research Unit dataset 
(CRU TS4.03) (Harris et al., 2014). For the first-order difference series of 
mean temperature and precipitation at 0.5◦×0.5◦resolution, we used 
piecewise linear interpolation to convert them into 2◦×2◦grid points. 

The Pearson correlation was applied for the correlation between the 
first-order difference series of the WFAC wildfires and the first-order 
difference series of 26 extreme climate indices at the same time scale 
and the same grid. Subsequently, the first-order difference series of the 
mean temperature/precipitation and wildfire occurrences in the corre
sponding grids were correlated to obtain the corresponding correlation 
coefficients. Then, these correlation coefficients were divided into three 
groups for discussion: pre-monsoon season, monsoon season, and post- 
monsoon season. The correlation coefficients for the three seasons 
were averaged, and so did for the annual correlation coefficients. To 
further assess the relationship between extreme climate indices and 
mean climate factors to wildfires, the absolute correlation coefficient 
values of the mean temperature (precipitation)-wildfire were subtracted 
from the absolute values of the extreme temperature (precipitation) 
index-wildfire correlation coefficient in the same grid. See Fig. S3 for a 
detailed flowchart of the methodology. 

In the intricate endeavor of unraveling the spatial dynamics inter
twined among extreme climate indices, the mean climate factors, and 
wildfires, we meticulously delineated contours for southeastern China 
(SEC) and southwestern China (SWC), anchored on the palpable spatial 
correlations observed. The southwestern realm’s boundaries were pro
foundly influenced by the salient correlations between extreme tem
perature indices and wildfires from January through April. In contrast, 
the southeastern expanse was demarcated based on its intrinsic ties with 
extreme precipitation indices within the same temporal window. In 
pursuit of regions exhibiting heightened correlations between wildfires 
and extreme climate indices, the correlation coefficients at each grid 
point were subjected to absolute value transformations. Through judi
cious refinements of the regional parameters, it became evident that 
territorial adjustments imparted negligible deviations to the culmi
nating results. Specifically, metrics within the SEC enclave exhibited 
modest oscillations between 0.55 and 0.65, while those within the SWC 
territory registered fluctuations confined to a 0.53 to 0.57 range, 
attesting to the robustness of the selected domains. The analytical lens 
was squarely focused on discerning overarching trajectories and para
digms, eschewing granular data points. As evinced in Figs. S4 and S5, the 
unwavering stability of both SEC and SWC was emphatically validated. 

Furthermore, the mean absolute values of the correlation coefficients 
between extreme climate indices and wildfires in each region were 
calculated, and the distance to the mean absolute values of the corre
lation coefficients between mean temperature/precipitation and wild
fires was derived, directly revealing the relationship strength between 
the two factors within the same region (Fig. S6). 

3. Results 

We conducted a statistical analysis of the total occurrences of wild
fire in China from 2005 to 2018 (Fig. S1), and found that during this 
period, the wildfire occurrences in southern China ranged between 
2,500 and 7,145. In contrast, wildfire occurrences in northern China 
were significantly lower, with most areas experiencing between 21 and 
300, and only a few areas in the northeast reaching between 1,500 and 
2,500. Additionally, from 2005 to 2018, there was an overall downward 
trend in the number of wildfire occurrences across various regions in 
China (Fig. S2a). 

3.1. Relationship between wildfires and the annual extreme climate 
indices 

The results of the correlation analysis of the annual extreme pre
cipitation indices and wildfire occurrences indicate that in southeastern 
China (hereinafter referred to as SEC) the correlation coefficient be
tween total precipitation and wildfires is generally higher than the 
selected extreme precipitation indices. However, in southwestern China 
(hereinafter referred to as SWC), the correlation between wildfires and 
extreme precipitation indices is notably stronger than with total pre
cipitation (Fig. S6). Notably, consecutive dry days (CDD) and wildfires 
in SWC exhibited a significant positive correlation (Fig. 1a), is signifi
cantly higher than that betwween of total precipitation and wildfires 
(Fig. 1b). CDD represents the days of continuous drought; the longer the 
duration of continuous drought, the greater the probability of wildfire. 
Other indices, such as CWD, SDII, R10mm, R20mm, R95p and R99p, had 
a weak correlation with wildfires in SWC, while exhibiting a negative 
correlation with wildfires in southeast China (Figs. S7–S9), which is 
roughly equivalent to the correlation of total precipitation and wildfire. 
Different from SEC, the precipitation in SWC was found to be concen
trated from June to August and due to the long drought time throughout 
the year, the occurrence of wildfires was more vulnerable to the impact 
of temperature (Chen et al., 2014). However, likely affected by the 
monsoon season, the precipitation in SEC had a stronger regulatory ef
fect on wildfires. 

After analyzing the correlation between the annual extreme tem
perature indices and wildfires, we found that the correlation of wildfire 
occurrences with the mean temperature was generally higher than the 
extreme temperature indices in SWC. However, the results in SEC and 
SWC were opposite (Fig. S6). The WSDI, indicating continuous high- 
temperature weather, had a relatively significant positive correlation 
with wildfires nationwide (Fig. 1c), and in SEC, the correlation between 
the two was even stronger than the mean temperature-wildfire (Fig. 1d 
and Fig. S6). Growing season length (GSL) was also positively correlated 
with wildfires nationwide (Fig. S10). Continuous high-temperature 
weather accelerates evaporation, which makes plants grow faster, 
before converting into combustible substances, thereby increasing the 
occurrence of wildfires. 

ID and FD were also found to have a significant negative correlation 
with wildfires in SWC (Fig. 2a and 2c), especially ID, which had a cor
relation with wildfires roughly equivalent to the correlation between 
mean temperature and wildfires. Both ID and FD indicate low- 
temperature days. Low temperature is not conducive to the growth of 
vegetation, and thus, more days of low temperature will reduce the 
availability of combustible materials, which could be a contributing 
factor to ID and FD being negatively correlated with wildfires in SWC. 
TR and SU had a significant positive correlation with wildfires in SWC, 
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and the correlation was roughly the same as that of mean temperature 
and wildfires, while the correlation with wildfires in SEC was not sig
nificant (Fig. S11). Both SU and TR indicate high-temperature days. 
Compared with low temperatures, a higher temperature is more 
conducive to biological activities and promotes plant growth. Addi
tionally, high temperatures will lead to high evaporation and increase 
the load of combustible materials, which could contribute to the positive 
correlation with wildfire occurrences in SWC. 

3.2. Relationship between wildfires and the monthly extreme climate 
index 

A statistical analysis of wildfire occurrences in different months of 
China from 2005 to 2018 (Fig. S1) shows that before the monsoon 
season (January to April), wildfires occurred frequently. At such time, 
southern China had a high incidence of wildfires with occurrences also 
noted in north China and northeast China. However, wildfires occur
rences in the monsoon season (May to September) dropped sharply all 
over China, and there were a few wildfires in the south and the northeast 
of China. After the monsoon season, the wildfire activities in the SEC 
significantly intensified, and there were also wildfire activities in the 
northeast. 

During the pre-monsoon season, the indices of high temperature 
(TXx, TX90p, TXn, and TN90p) and low temperature (TNn, TNx, TN10p, 

and TX10p), and diurnal temperature range (DTR) exhibited significant 
correlations with wildfires in SWC (Figs. 3–5; Figs. S12–S17). Notably, 
the correlation of DTR with wildfires in the SWC was stronger than that 
of mean temperature-wildfire correlation during the same period 
(Fig. 3b). In SEC, two-thirds of the extreme temperature indices exhibit 
stronger correlations with wildfire occurrences as compared to the mean 
temperature. Among these indices, DTR and TX90p, TXn, TNx, which 
represent high temperatures, demonstrate more pronounced associa
tions with wildfires. Conversely, the remaining temperature indices 
reveal relatively weaker correlations with wildfires in SEC, approxi
mating the correlation strength observed between mean temperature 
and wildfire incidents (Fig. S6). From the aforementioned findings, the 
wildfires in SWC were probably affected by both low temperature and 
high temperature, while the wildfires in SEC were more vulnerable to 
high temperature. 

During the monsoon season, DTR, TXx, TX90p, TNn, TNx, and 
TN10p were significantly correlated with the wildfires in the south- 
central China and adjacent regions (hereinafter referred to as SCC) 
(Fig. 3c, 4c and 5c), and the correlations were significantly stronger than 
that of the mean temperature (Fig. 3d, 4d and 5d; Figs. S14–S16), 
indicating that the wildfire activities in the region were more vulnerable 
to the impact of extreme temperatures in the season. During the post- 
monsoon season, DTR, TXx, and TX90p had significant positive corre
lations with wildfires in SWC and SEC (Fig. 3e, 4e and 5e), even 

Fig. 1. Pointwise correlations between the first-order difference of WFAC wildfire occurrences (2005–2018) and the first-order difference of (a) consecutive dry days 
(CDD) and (c) warm spell duration (WSDI). (b) Comparison of the correlations between CDD and wildfire occurrences (I) and between the mean precipitation- 
wildfire occurrences (II) (I-II). (d) The same as (b), but for the correlations between WSDI and wildfire occurrences (I) and between the mean temperature and 
wildfire occurrences (II) (I-II). See the Discussion section for the comparison method. (In this figure, notations are used for clarity: ’(I)’ represents the first data 
analysis, ’(II)’ the second, and ’(I-II)’ a comparative analysis between them. These notations is uniformly applied in subsequent figure captions.). 
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surpassing the correlation between average temperature and wildfires 
within the same regions (Fig. 3f, 4f and 5f). The other extreme tem
perature indices had no significant correlation with the wildfires in 
China. 

The same method was adopted for analysis of the correlation be
tween the extreme precipitation indices (Rx1day and Rx5day) and 
wildfires in China, and the correlation between the two indices and 
wildfire exhibited consistent changes (Fig. 6 and Fig. S18). During the 
pre-monsoon season, Rx1day and Rx5day were significantly negatively 
correlated with wildfires in SEC, and the correlation was slightly better 
than that of seasonal total precipitation and wildfire (Fig. S6), which 
likely indicates that the wildfire activities in SEC were also affected by 
extreme precipitation during such period, while being weakly nega
tively correlated or even uncorrelated in SWC. During the monsoon 
season, there was no significant correlation between the aforementioned 
indices and wildfires in the SEC and SWC. However, after the monsoon 
season, Rx1day and Rx5day had weak negative correlations with wild
fires in SWC. 

4. Discussion 

In the context of escalating global warming, compounded climate 

extremes including heatwaves and droughts are intensifying, precipi
tating wildfire risks. The IPCC’s Sixth Assessment Report (Chapter 11) 
illuminates the upsurge in such events since the 1950s, particularly 
prevalent in Southern Europe, Northern Eurasia, the US, and Australia 
(medium confidence). Anthropogenic influences are likely augmenting 
these incidents, with climate change expected to amplify their fre
quencies in multiple regions (high confidence). The intensifying severity 
of droughts and heatwaves foreseeably conduces to a higher frequency 
of conducive wildfire weather conditions, consequently escalating 
wildfire threats (high confidence) (Masson-Delmotte et al., 2021). 
Research on extreme climate and wildfires has become a trending topic 
in the field of climate and environment (Goss et al., 2020). However, 
there is a scarcity of research in which relationships between wildfires 
and extreme climate indices have been investigated in China. In the 
present study, 26 extreme climate indices were applied to comprehen
sively analyze wildfires in China. In this study, extreme temperature and 
precipitation indices were used as the main metrics, with results 
compared to the correlation between wildfire occurrences and mean 
temperature/precipitation, in an attempt to provide a research direction 
for the relationship between wildfires and climate extremes, even 
wildfire prediction. 

Fig. 2. Pointwise correlations between the first-order difference of WFAC wildfire occurrences (2005–2018) and the first-order difference of (a) ice days (ID) and (c) 
frost days (FD). (b) Comparison of the correlations between the ID and fire occurrences (I) and between the mean temperature and wildfire occurrences (II) (I-II). (d) 
the same as (b), but for the correlations between the FD and wildfire occurrences (I) and between the mean temperature and wildfire occurrences (II) (I-II). The 
comparison method is the same as above. 
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4.1. Relationship between wildfires and climate extremes in SWC 

Overall, from 2005 to 2018, the region with the highest occurrence 
of wildfires was predominantly concentrated in southern, subtropical 
China. Compared with precipitation, wildfires in SWC are mainly driven 
by temperature, because both extreme temperature index and mean 

temperature are significantly correlated with wildfires in SWC. Through 
comparison, we found that the correlation between mean temperature 
and wildfire was more significant because compared with climate ex
tremes, the continuous change of temperature can have a more signifi
cant impact on wildfires. The climate is dry with minimal rain and high 
temperatures in spring in SWC. At the same time, blocked by the 

Fig. 3. Pointwise correlations between the first-order difference of WFAC wildfire occurrences (2005–2018) and the first-order difference of diurnal temperature 
range (DTR) in (a) pre-monsoon season (January to April), (c) monsoon season (May to September), and (e) post-monsoon season (October to December). Com
parison of the wildfire occurrence-DTR correlation and the wildfire occurrence-mean precipitation relationship in (b) pre-monsoon season, (d) monsoon season, and 
(f) post-monsoon season. 
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Qinghai-Tibet Plateau and the surrounding high mountains thereof, the 
cold and dry airflow from the north is weakened, making the tempera
ture higher than that in SEC with the same latitudes (Lian et al., 2015), 
thereby forming an ideal environment for the occurrence of wildfires 
during the pre-monsoon season. In such case, the impact of extremely 
high temperature on wildfires is weakened, and the relationship 

therebetween is not as good as the mean temperature-wildfire. However, 
in environments with high temperature, the correlation between 
extreme index indicating low temperature (for example, ID and FD has a 
significant negative correlation with wildfire in SWC) and wildfires is 
roughly equivalent to the mean temperature-wildfire correlation 
(Fig. 2b and 2d). Once the temperature is lower than 0 ℃, the water on 

Fig. 4. Pointwise correlations between the first-order difference of WFAC wildfire occurrences (2005–2018) and the first-order difference maximum Tmax (TXx) in (a) 
pre-monsoon season (January to April), (c) monsoon season (May to September), and (e) post-monsoon season (October to December). Comparison of wildfire 
occurrence-TXx correlation and wildfire occurrence-mean temperature association in (b) pre-monsoon season, (d) monsoon season, and (f) post-monsoon season. 
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the ground is not easy to evaporate and can even be retained in solid 
form, significantly reducing the probability of wildfires. Despite such 
findings, there is a high annual mean temperature in SEC due to the low 
latitude, thus, the extreme case of ID can be ignored in wildfire research 
when the mean temperature is used. 

Although wildfires in SWC were found to be mainly controlled by 
temperature rather than precipitation, the correlation between the most 
climate extreme index related to precipitation and wildfire was higher 
than that of the total precipitation. Such findings could be attributed to 
the fact that when a meteorological factor is not the dominant factor for 
the occurrence of wildfire in the region, only when such factor is 
extreme can wildfires be impacted. CDD represents the continuous 
drought days, and was found to be significantly positively correlated 
with wildfires in SWC (Fig. 1a), and the correlation between CDD and 
wildfire in such area is obviously better than that of the total annual 
precipitation-wildfire (Fig. 1b and Fig. S6). The total annual precipita
tion represents the accumulation of precipitation in a year, which cannot 

reflect the drought/humidity condition in a certain period, such as in a 
few days. Meanwhile, the CDD represents the extreme drought for a 
period of time in the year, with a longer lasting drought indicating a 
higher probability of wildfire occurrences. As such, through analysis of 
the correlation between CDD and wildfires, the relationship between 
drought/humidity and wildfires can be more accurately captured in a 
certain period. In addition, compared to the SEC, SWC has distinct dry 
and wet seasons. With the occurrence of concentrated rainfall, the 
combustible material load would increase, resulting in an increase in 
wildfire occurrence. Therefore, certain extreme precipitation indices, 
such as R95p, R99p, SDII, and others, were positively correlated with 
wildfires in SWC, and the correlations were stronger than that of the 
total annual precipitation and wildfires in the region (Fig. S6). This 
phenomenon further indicates that, in SWC, extreme precipitation may 
have a greater impact on the occurrence of wildfires. It was also proved 
by Ying et al. (2022) that wildfires in the SWC are regulated by 
precipitation. 

Fig. 5. Pointwise correlations between the first-order difference of WFAC wildfire occurrences (2005–2018) and the first-order difference of Warm Days (TX90p) in 
(a) pre-monsoon season (January to April), (c) monsoon season (May to September), and (e) post-monsoon season (October to December). Comparison of wildfire 
occurrence-TX90p correlation and wildfire occurrence-mean temperature correlation in (b) pre-monsoon season, (d) monsoon season, and (f) post-monsoon season. 
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4.2. Relationship between wildfire and climate extremes in SEC 

Contrary to the findings in SWC, the occurrence of wildfires in SEC 
was found to be primarily modulated by precipitation, and the corre
lation thereof with the total precipitation was higher than the extreme 
precipitation indices. In SEC, R10mm, R20mm, R95p, and R99p, all of 
which indicate extreme precipitation, had strong negative correlations 
with wildfires in SEC (Figs. S8 and S9). R10mm and R20mm indicate the 
total number of days with the annual daily precipitation ≥10 mm and 

≥20 mm, respectively. R95p and R99p indicate the sum of precipitation 
exceeding the 95 % and 99 % quantiles, respectively. All of the afore
mentioned indices represent extreme precipitation, but the impact on 
wildfire activities is generally less than the total precipitation. In the 
southeast coastal area of China, due to its proximity to the Pacific Ocean, 
the airflow from the ocean can carry a large amount of water vapour and 
bring abundant precipitation to the region. Thus, SEC is an area with 
more precipitation, and the time of precipitation in SEC is also consid
erably longer than that in other regions of China (Li et al., 2013). Under 

Fig. 6. Pointwise correlations between the first-order difference of WFAC wildfire occurrences (2005–2018) and the first-order difference of maximum 1 day total 
(RX1day) in (a) pre-monsoon season (January to April), (c) monsoon season (May to September), and (e) post-monsoon season (October to December). Comparison of 
the wildfire occurrence-RX1day association and the wildfire occurrence-mean precipitation correlation in (b) pre-monsoon season, (d) monsoon season, and (f) post- 
monsoon season. 
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such conditions, the occurrence of wildfire is suppressed for a long 
period, leading to a weaker influence of extreme precipitation on 
wildfires. 

Although wildfires in SEC are largely controlled by precipitation, the 
correlation between all extreme temperature indices and wildfires in the 
region is higher than that of mean temperature-wildfire. Because of the 
low latitude of SEC and the proximity to the sea, the temperature in the 
region is relatively stable. At the same time, temperature does not have a 
major impact on wildfires, meaning that there will only be a relatively 
significant impact on wildfires under extreme conditions. ID and FD are 
indices indicating the number of days of extremely low-temperature. 
Located in the subtropical region with low latitude, the extremely 
low-temperature days of SEC are concentrated in winter. Unlike other 
regions, in SEC, such indices were positively correlated with wildfires, 
since the higher number of cold days that last longer result in humans 
needing to ignite for heating. WSDI indicates continuous high- 
temperature weather, and was found to have a positive correlation 
with wildfire nationwide. Further, the correlation thereof with wildfires 
in SEC was also stronger than the correlation of the mean temperature- 
wildfire. In the case of sufficient precipitation, if continuous high- 
temperature weather occurred, the evaporation of water vapor in the 
area would accelerate, make the plants grow quicker, and have sufficient 
time to convert into combustibles, thereby increasing the wildfire 
occurrence. 

It is noteworthy that indices such as WSDI, CSDI, CDD, and CWD, 
emphasizing the continuity of climate extremes, all show their highest 
values in SWC (Fig. S19). In this region, only the indices for continuous 
high temperatures and droughts show a significant positive correlation 
with wildfires. Undoubtedly, persistent hot and dry conditions increase 
the load of combustibles and facilitate combustion. However, the situ
ation in the SEC differs significantly. With abundant rainfall and longer 
rainy seasons in SEC, the impact of extreme rainfall on wildfire occur
rence in this area is relatively minor, though there are frequent extreme 
rainfall and a significant correlation between extreme precipitation and 
wildfires in SEC. In SEC, both CDD and CWD are fewer than in SWC, 
indicating that rainfall in SEC is more dispersed throughout the year. 
Therefore, in SWC, where the number of CDD is longer, extreme pre
cipitation can promote vegetation growth and increase the load of 
combustibles. However, in SEC, where the total amount of rainfall is 
high but not concentrated in time, the impact of extreme rainfall on 
wildfires is diminished. 

4.3. Seasonal dynamics of wildfire occurrences in China: influences of 
monsoon and climate extremes 

It is evident that the relationship between wildfire occurrences in 
China and extreme climate indices exhibits significant seasonal varia
tions. In general, during the main fire seasons in China (from January to 
April), the correlation between the wildfire and the monthly extreme 
temperature index in the SWC and SEC is roughly consistent with the 
annual extreme temperature index. This consistency may arise from the 
fact that wildfires in January to April hold a higher weight in illustrating 
the relationship between wildfires and climate. During the period, the 
correlation between the monthly extreme temperature index and the 
wildfire in SWC is higher than that in other regions, but lower than the 
correlation between the seasonal mean temperature and wildfire in this 
region. January to April is the late winter to spring in the northern 
hemisphere, and then the temperature in the northern hemisphere 
gradually warms up. The wildfire activities in SWC and northeast China 
have also exhibited an increasing trend month by month in the season 
(Fang et al., 2021). The East Asian summer monsoon has not yet pre
vailed in China from January to April, and most parts of the country 
have sunny and dry weather controlled by the high pressure, which is 
conducive to the activities of wildfires. Such conditions could be 
contributing factors to DTR being highly correlated with wildfires in 
most parts of China. In this season, the wildfires in southwest, north and 

northeast China were also significantly positively correlated with the 
TXx and TX90p, both of which represent extremely high temperature. In 
this season, the climate in most parts of China tends to be cold and dry, 
and once extremely high temperature occurs, the probability of wildfires 
will greatly increase. Additionally, before the monsoon season, wildfires 
in the southeast coastal area had negative correlations with Rx1day and 
Rx5day, which is consistent with the spatial distribution of the corre
lation between the annual extreme precipitation index and the wildfire. 
The southeast coastal area is close to the western Pacific, and the water 
vapor from the western Pacific can bring abundant precipitation to the 
area, reducing the potentiality of the ignition and the spread of wildfires, 
which will cause a reduction in wildfire activities. However, during this 
period, the SEC experiences a high wildfire occurrences. Combined with 
the annual analysis, it is evident that precipitation in SEC exerts a strong 
regulatory effect on wildfires. Consequently, prior to the onset of the 
monsoon season, the reduced precipitation contributes to a heightened 
period of wildfire occurrences (Fig. S20). 

In the summer of the northern hemisphere, the frequency of climate 
extremes in China (especially in south China) was higher than in other 
seasons (Xu et al., 2011). But affected by the East Asian summer 
monsoon, wildfire occurrences significantly decreased, and the rela
tionship between wildfire and climate generally weakened. However, 
there is a high correlation between wildfire and the extremely high- 
temperature indices (TXx, TX90p) and extremely low-temperature 
indices (TNn, TN10p) in SCC (25◦~33◦N, 105◦~120◦E), and the cor
relation was significantly stronger than that between the mean tem
perature and the wildfire. Influenced by the subtropical high-pressure 
ridges, precipitation decreased and sunny weather occurred more 
frequently in SCC during the monsoon season, which is conducive to fire 
activities. After the monsoon season, DTR, TXx, and TX90p were 
significantly positively associated with wildfires in SWC and eastern 
regions, indicating that wildfire activity becomes more frequent with the 
occurrence of high temperatures, particularly against the backdrop of 
generally lower temperatures across China. During this period, however, 
wildfires were mainly concentrated in SEC (Fig. S1), primarily due to 
lower rainfall in the winter (Figs. S21 and S22), which significantly 
reduces the inhibitory effect on wildfires, and secondly, the region’s low 
winter temperatures combined with high population density lead to a 
significant increase in human-induced fire ignitions (such as for 
heating). 

Consequently, wildfire activity in Southern China is significantly 
influenced by the monsoon season, resulting in distinct wildfire occur
rence mechanisms and peak seasons compared to Northern China and 
other regions at similar latitudes. Southern China, especially its sub
tropical areas, hosts some of the most lush subtropical forests globally, 
characterized by high fuel utilization, abundance, and flammability. 
Particularly during the non-monsoon season (approximately from 
October to April), seasonal droughts dry out the available fuel, 
increasing wildfire susceptibility. The seasonal characteristics of fire 
seasons here also differ from those in other parts of the world. In 
Southern China, 71 % of wildfires occurred in winter and early spring, in 
stark contrast to the weaker wildfire activity during the summer due to 
moist conditions brought by the monsoon. This forms a sharp contrast 
with the boreal forests, where wildfire peaks occur in summer, driven by 
high temperature (Randerson et al., 2006; Bond-Lamberty et al., 2007; 
Guo et al., 2017; Kim et al., 2020). In China’s northernmost parts, lying 
on the edge of the summer monsoon, wildfire peaks are seen in summer 
and autumn. Regions along the Mediterranean coast and in California, 
USA, which are at the same latitude as Southern China, also witness peak 
wildfire activities in summer and autumn. Influenced by the Mediter
ranean climate, the hot and dry conditions prevalent in summer are 
highly conducive to wildfire occurrences (Trouet et al., 2006; Westerling 
et al., 2006; Wahl et al., 2019). This presents a stark contrast to the 
subtropical areas of China, where the weakest wildfire activity occurs in 
summer (June to August) (Fig. S2b), a period dominated by the summer 
monsoon that brings humid conditions. The number of wildfires 
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associated with the summer monsoon is notably lower. 

5. Conclusion 

Utilizing wildfire data from the Wildfire Atlas of China (WFAC), 
extreme climate index data from the Hadley Center, and temperature 
and precipitation data from the China Climate Research Unit datasets 
(CRUTS4.03), we studied the main meteorological factors affecting 
wildfires in different regions in China through analyzing the correlations 
between wildfire occurrences, extreme climate indices, and mean tem
perature/precipitation in China from 2005 to 2018. The results indicate 
that on an annual scale, wildfire occurrences in southwest China were 
primarily driven by temperature, with a stronger correlation to mean 
temperature than to extreme temperature indices being observed. 
Conversely, a closer relationship was found between the extreme pre
cipitation index and wildfires in southwest China than between mean 
precipitation and wildfires. In southeast China, wildfire occurrences 
were primarily regulated by precipitation, but more by the mean pre
cipitation than extreme precipitation indices, while the extreme tem
perature index was more responsive to wildfires than the mean 
temperature. In Northeast China, wildfires show a more significant 
correlation with mean temperature than with any extreme climate 
indices, indicating a minimal impact from extreme climatic conditions. 
On the seasonal scale, the spatial relationship between the monthly 
extreme temperature index and wildfires in the pre-monsoon season 
(main fire season) was essentially consistent with the annual scale re
sults. Additionally, wildfires in the southeast China were more closely 
related to extreme precipitation indices. During the monsoon season, 
there was a high correlation of wildfire occurrence with extreme tem
perature indices in and around central and southern China, and the 
correlation was stronger than that with mean temperature. We also 
found that the relationship between CDD/seasonal mean DTR and 
wildfires in the southwest/southeast China was stronger than those of 
the annual total precipitation or seasonal mean temperature. These 
findings on the regional differences in the main factors controlling fire 
occurrence would be useful for regional ecosystem and fire 
management. 
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