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Abstract

Dynamical downscaling generally performs poorly on the Tibetan Plateau (TP), due to the region’s complex topography and
several aspects of model physics, especially convection and land surface processes. This study investigated the effects of the
cumulus parameterization scheme (CPS) and land-surface hydrology scheme (LSHS) on TP climate simulation during the
wet season using the RegCM4 regional climate model. To address these issues and seek an optimal simulation, we conducted
four experiments at a 20 km resolution using various combinations of two CPSs (Grell and MIT-Emanuel), two LSHSs (the
default TOPMODEL [TOP], and Variable Infiltration Capacity [VIC]). The simulations in terms of 2-m air temperature,
precipitation (including large-scale precipitation [LSP] and convective precipitation [CP]), surface energy-water balance,
as well as atmospheric moisture flux transport and vertical motion were compared with surface and satellite-based observa-
tions as well as the ERAS reanalysis dataset for the period 2006-2016. The results revealed that the model using the Grell
and TOP schemes better reproduced air temperature but with a warm bias, part of which could be significantly decreased
by the MIT scheme. All schemes simulated a reasonable spatial distribution of precipitation, with the best performance in
the experiment using the MIT and VIC schemes. Excessive precipitation was produced by the Grell scheme, mainly due
to overestimated LSP, while the MIT scheme largely reduced the overestimation, and the simulated contribution of CP to
total precipitation was in close agreement with the ERAS data. The RegCM4 model satisfactorily captured diurnal cycles
of precipitation amount and frequency, although there remained some differences in phase and magnitude, which were
mainly caused by the CPSs. Relative to the Grell scheme, the MIT scheme yielded a weaker surface heating by reducing net
radiation fluxes and the Bowen ratio. Consequently, anomalous moisture flux transport was substantially reduced over the
southeastern TP, leading to a decrease in precipitation. The VIC scheme could also help decrease the wet bias by reducing
surface heating. Further analysis indicated that the high CP in the MIT simulations could be attributed to destabilization
in the low and mid-troposphere, while the VIC scheme tended to inhibit shallow convection, thereby decreasing CP. This
study’s results also suggest that CPS interacts with LSHS to affect the simulated climate over the TP.
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1 Introduction

The Tibetan Plateau (TP), also known by scientists as the
“Third Pole”, is well recognized as exerting significant
influence on regional and even global weather and cli-
mate systems through its thermodynamic and mechanical
forcing (Duan et al. 2012; Wu et al. 2015). The TP is also
referred to as the “Asian water tower” due to its extensively
developed cryosphere and the fact that it is the source of
several major Asian river systems, including the Yang-
tze River, Yellow River, Lancang-Mekong, and Ganges
River, which provide substantial amounts of water to sur-
rounding and downstream areas (Immerzeel et al. 2010).
The TP has experienced significant warming over the past
50 years, at a rate of approximately 0.3—0.4 °C per decade,
twice the global temperature rise (Chen et al. 2015). Major
climate-induced changes have occurred, such as shrinkage
of cryospheric elements (glacier retreat, permafrost deg-
radation, and snow cover decrease) (Yang et al. 2019) and
intensification of the hydrological cycle (Yao et al. 2018).
A recent study demonstrated that the TP, as the main body
of the Asian water tower, is the most important and also
the most vulnerable water tower component (Immerzeel
et al. 2020). Therefore, an in-depth understanding of cli-
mate change in a sensitive and vulnerable region such as
the TP is of great significance for maintaining the water
tower and addressing other eco-environmental issues.

In general, coverage of the meteorological station net-
work on the TP is poor, with most stations concentrated
on the central and eastern TP, as well as low-elevation
areas. This makes it difficult and speculative to compre-
hend the vital processes crucial to regional climate and
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land—atmosphere interactions (Chen et al. 2015). Global
reanalyses are then used to investigate processes that are
crucial to regional climate over the TP (e.g., You et al.
2015; Zhang et al. 2017; Bao and Zhang 2019; Wang et al.
2020). However, the resolutions of commonly available
reanalyses are too coarse to resolve many smaller-scale
processes, such as atmospheric processes in mountainous
topography and precipitation generation over the TP (Chen
et al. 2016). Regional climate models (RCMs) are indis-
pensable tools that dynamically downscale reanalyses or
global climate models (GCMs) to reproduce the current
climate and project future climate change with high spatial
resolutions; they have been widely used to depict regional-
scale details and resolve small-scale processes that GCMs
with resolutions that are too coarse often fail to do (e.g.,
Leung et al. 2006; Gao et al. 2011; Wang et al. 2013, 2021;
Saini et al. 2015; Giorgi et al. 2016; Gao and Chen 2017,
Giorgi 2019; Gutowski et al. 2020; Ou et al. 2020). RCMs,
however, have a number of uncertainties when simulating
climate as a result of various model physical parameters,
climate variability, and topographic complexity. These are
particularly challenging over the TP, which is the highest
and most extensive plateau on earth and features a high
degree of surface heterogeneity. Numerous mountains,
such as the Kunlun Mountains in the north, the Himalayas
in the southern margin, the Karakoram Mountains in the
west, and the Tanggula Mountains in the middle, are wide-
spread on the TP. The altitude in the TP increases gradu-
ally from southeast to northwest (Fig. 1a), the topography
varies greatly over small areas, especially in the northwest
and along the south edge of the TP. The climate system on
the TP is competitively regulated by the westerlies, Asian
monsoon system, and local land—atmosphere interactions,

(b) Land cover
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1 Crop/mixed farming 6 Evergreen broadleaf tree 11 Semi-desert 17 Deciduous shrub
2 Short grass 7 Tall grass 12 Ice cap/glacier 18 Mixed Woodland

3 Evergreen needleleaf tree 8 Desert
4 Deciduous needleleaf tree 9 Tundra
5 Deciduous broadleaf tree 10 Irrigated Crop

14 Inland water 19 Forest/Field mosaic

16 Evergreen shrub

Fig. 1 a Model domain and topography in the study and b land cover types over the Tibetan Plateau used in the land surface model, derived
from the United States Geological Survey (USGS) Global Land Cover Characterization (GLCC) database

@ Springer



Effects of cumulus parameterization and land-surface hydrology schemes on Tibetan Plateau...

which pose a great challenge for climate simulations over
the steep mountains (Wang et al. 2018; Bao and Li 2020;
Fu et al. 2020).

A number of studies have aimed to reduce uncertainty
in climate simulations of the TP (Wang et al. 2014, 2016;
Zou et al. 2014; Gao et al. 2016, 2017a; Tang et al. 2017;
Lin et al. 2018; Gu et al. 2020). Sensitivity experiments,
for example, have revealed that TP climate simulations are
sensitive to the choice of land surface model (LSM), and
RCMs with the Community Land Model (CLM) exhibit bet-
ter performance in simulating temperature and precipitation
(Wang et al. 2014). It has also been found that land-surface
processes and large-scale forcing play different roles in
dynamic downscaling, forcing datasets with smaller trend
biases perform better, and LSMs exert a greater influence on
downscaling simulations (Gao et al. 2017a). The soil water-
heat physics associated with soil freezing—thawing processes
in the CLM has a significant effect on surface energy flux,
the overlying atmosphere, and the TP climate, and the pre-
cipitation overestimation by RCMs is appreciably alleviated
by revising the soil water-heat physics (Wang et al. 2016).
These studies highlight the importance of the LSM in accu-
rate RCM simulations.

In addition, convection is considered to be one of the
most critical physical processes affecting the occurrence
and amount of precipitation (Kukulies et al. 2020; Niu et al.
2020). Due to the small scale of convective clouds, cumulus
parameterization schemes (CPSs) have been introduced into
GCMs and RCMs to resolve the convective-scale processes
(Anthes 1977, Tiedtke 1989; Arakawa 2004). The CPS is
often considered to be a primary error source in precipitation
simulations (Gao et al. 2016). Therefore, the sensitivity of
precipitation to different CPSs has been examined in order to
ascertain the reasonable CPS for climate simulations over a
region of interest (Gao et al. 2017b; Gu et al. 2020; Niu et al.
2020). Improved precipitation simulation can be attained
by means of certain combinations of model parameteriza-
tions, even though an optimal model configuration remains
elusive. In addition to its influence on precipitation, cumulus
convection is a key process in the regulation of atmospheric
moisture flux, which fundamentally influences the water bal-
ance and radiation forcing, and provides strong feedback to
the climate system (Emanuel and Zivkovié-Rothman 1999).

The land-surface hydrological cycle has important impli-
cations for land—atmosphere interactions and the climate
system (Dirmeyer et al. 2013; Ghosh 2018; Kushwaha et al.
2018; Anwar et al. 2019). With the aid of LSMs, some pre-
vious studies have reported the influence of runoff on the
surface hydrological cycle and energy balance (Wang et al.
2008; Li et al. 2011). According to the sensitivity experi-
ment that replaces the soil hydrological scheme in the LSM,
the use of the Variable Infiltration Capacity (VIC) scheme in
place of the TOPMODEL (TOP) scheme better reproduces

observed soil hydrological variability; in addition, the ability
to simulate evapotranspiration (latent heat) is also enhanced
due to the interaction of runoff and soil moisture (Wang et al.
2008). Changes in the hydrological cycle have an influence
on regional climate because the water cycle is accompanied
by energy exchange. RCM simulation experiments have
suggested that the runoff scheme is indeed able to clearly
influence the hydrological cycle and surface climate in
Africa (Anwar et al. 2019). Yet RCM performance is com-
monly region-dependent, and it is unclear how land-surface
hydrology schemes (LSHSs) influence the TP climate. RCM
experiments configured with different CPSs and an LSM
can generate significantly different climate simulation results
(Gao et al. 2016; Niu et al. 2020). It is also of great interest
to examine whether different configurations of CPSs and
LSHSs will lead to climate simulation improvements. This
could help to more deeply comprehend the climate system
on the TP and provide atmospheric forcing data for further
fine-scale modeling, such as double-nested (Gu et al. 2020)
or convection-permitting simulation (Prein et al. 2015).
Thus, the objective of this study was to investigate the roles
CPS and LSHS play in the simulation of regional climate
and to explore how key physical processes represented by
these parameterization schemes act on climate.

The remainder of this manuscript is organized as follows.
Section 2 describes the model and data used in this study.
Section 3 presents the comparisons between the observations
and simulations, including air temperature and precipitation
(large-scale and convective) as well as the diurnal cycle of
precipitation. We also investigate the impacts of the CPS and
LSHS on the surface energy and water budgets in Sect. 4.
Section 5 comprises an analysis of the moisture flux trans-
port and upward motion in order to account for the different
precipitation simulations. The conclusions of this investiga-
tion are summarized in Sect. 6, along with a brief summary
of the implications of this study.

2 Model, experiment design, and validation
data

2.1 RegCM4 description

The RCM used in this study was the Abdus Salam Interna-
tional Centre for Theoretical Physics (ICTP) RegCM version
4.7. The RegCM is a limited-area model using a terrain-
following o-pressure vertical coordinate and an Arakawa
B horizontal grid system (Giorgi et al. 2012). The model’s
dynamic components include the latest non-hydrostatic ver-
sion and a hydrostatic version of the MM5 with improve-
ments to the coupling with an advanced and sophisticated
LSM (CLM3.5 and CLM4.5, Oleson et al. 2008, 2013).
The physical parameterizations in the model contain the
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radiation package of the National Center for Atmospheric
Research (NCAR) community climate system model version
3 (CCSM3) (Kiehl et al. 1996); the Rapid Radiation Transfer
Model (RRTM) (Mlawer et al. 1997); the planetary bound-
ary layer (PBL) scheme developed by Holtslag and Boville
(1993), which allows for non-local transport in the convec-
tive boundary layer; the large-scale cloud and precipitation
scheme (Pal et al. 2000), known as the SUBgrid EXplicit
moisture scheme (SUBEX), which accounts for sub-grid
variability in clouds; and several optional CPSs, such as the
Kuo (Anthes 1977), Kain—Fritsch (Kain and Fritsch 1993),
Grell (Grell 1993), MIT-Emanuel (hereafter MIT) (Emanuel
1991), and Tiedtke (Tiedtke 1989). Overall, many aspects
of the RegCM4’s simulation capabilities have been updated
(Giorgi et al. 2012; Giorgi 2019), including the representa-
tion of climate variables over multiple Coordinated Regional
Climate Downscaling Experiment (CORDEX) domains.

2.2 Convective parameterization and land-surface
hydrology schemes

Two CPSs, the Grell and MIT schemes, were employed in
this study because they have been demonstrated to exhibit
acceptable performance in simulating climate variables and
have been commonly used (e.g., Giorgi et al. 2004; Zou
et al. 2014; Gao et al. 2016; Wang et al. 2016). The Grell
scheme (1993) supposes that clouds are represented by two
steady-state circulations: an updraft and a downdraft. Mix-
ing occurs only in the cloud base and top. The mass flux is
constant with height and there is no entrainment or detrain-
ment along the cloud edges. Convection is activated when
an elevated parcel achieves moist convection. Heating and
moistening depend on the mass fluxes and detrainment at the
cloud base and top. The cooling effect of moist downdrafts
is considered.

The MIT scheme is the most complex, as it describes
the cumulus processes, and considers cloud mixing and ice
processes. This method assumes that cloud mixing is highly
episodic and inhomogeneous, and convective fluxes are
based on an idealized model of subcloud-scale updrafts and
downdrafts (Emanuel 1991). If the neutral buoyancy level
is higher than the cloud base level, convection is triggered.
Between the two levels, the air is lifted and a portion of
the condensed water vapor will form precipitation while the
remainder forms cloud. The mixing entrainment and detrain-
ment rates are determined by the vertical gradients of buoy-
ancy in clouds. The cloudy air mixed with its environment at
each level is proportional to the undiluted buoyancy rate of
change with height. A formulation of the auto-conversion of
cloud water into precipitation inside cumulus clouds is also
contained in the scheme.

The LSM CLM4.5 was selected since it has parameter-
ized the soil-vegetation—atmosphere interaction processes
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and includes more elaborate surface characteristics com-
pared with its predecessor, CLM3.5. Two LSHSs in the
CLM4.5 were tested in the present work, i.e. the default
and the VIC. The default LSHS in the CLM4.5 is the sim-
ple TOPMODEL-based (Beven and Kirkby 1979) runoff
model (SIMTOP) described by Niu et al. (2005), herein-
after referred to as the TOP scheme. The TOP scheme for
parameterizing runoff is based on the treatment of fractional
saturated areas, which is dependent on the topographic char-
acteristics and soil moisture state of a grid cell.

The VIC land-surface hydrology model was also provided
as an alternative scheme. The VIC scheme is derived from
the variable infiltration capacity LSM (Liang et al. 1994).
Three soil layers with variable depths are designed in the
VIC scheme to reflect the soil’s dynamic response to rainfall
events for surface runoff generation and to depict subsur-
face runoff generation. In contrast with the TOP scheme, the
fractional saturated area is defined by soil moisture in the
top two VIC layers and a parameter that controls the shape
of the soil moisture-holding capacity curve. Therefore, this
scheme hypothesizes that the soil moisture-holding capac-
ity curve can represent the spatial inhomogeneity of soil
moisture-holding capacity in the top VIC layers. Subsur-
face runoff generation is more intricate and considers the
subsurface flow rate, storage capacity, and soil water of the
third layer. For more details and relevant formulas, refer to
Lietal. (2011) and Oleson et al. (2013).

2.3 Numerical experiments and validation datasets

To evaluate the performance of different CPSs and LSHSs
and explore the interactions between them, four experiments
using the RegCM4-CLM4.5 model covering the TP and its
surrounding areas (Fig. 1a) were conducted: (1) Grell and
CLM4.5 with TOP (hereinafter referred to as GTP), (2) Grell
and CLM4.5 with VIC (GVC), (3) MIT and CLM4.5 with
TOP (MTP), and (4) MIT and CLM4.5 with VIC (MVC).
Different combinations of CPSs and LSHSs were used for
the following reasons: (1) When comparing the GTP and
MTP or GVC and MVC simulations, in which the same
LSHS was used, the climate effects caused by different CPSs
could be detected; (2) Comparing the GTP and GVC or MTP
and MVC simulations, in which the same CPS was used,
could detect the climate effects caused by different LSHSs;
(3) By further comparing the two pairs of simulations, the
interactions between CPSs and LSHSs could be revealed.
For easier understanding, these were tabulated in Table 1.
According to the United States Geological Survey (USGS)
Global Land Cover Characterization (GLCC) database, the
land cover types used in the land surface model include short
grass, semi-desert, desert, tundra, and deciduous broadleaf
tree (Fig. 1b).
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Table 1 Design of the four

. . L LSHSs CPSs
simulations with different
combinations of cumulus TOP VIC Grell MIT
parameterization schemes
(CPSs) and land-surface GTP Yes Yes
hydrology schemes (LSHSs) GVC Yes Yes
MTP Yes Yes
MVC Yes Yes
Objective Climate effect of Climate effect of Climate effect of Climate effect of

CPS with the TOP
scheme

CPS with the VIC
scheme

LSHS with the Grell
scheme

LSHS with the MIT
scheme

Comparing the two pairs of experiments could reveal the impacts of the interactions between
CPSs and LSHSs on simulated climate

The simulation domain in the four experiments was
centered at 30° N and 88° E, with a 20 km horizontal grid
spacing (a 224 X 152 grid mesh). The horizontal resolution
adopted in the study is as fine as those employed by RCMs
in recent studies (e.g., Gao et al. 2011; Ménégoz et al. 2013),
but is higher than that in the second phase of the CORDEX
(0.22° resolution, ~ 25 km) over multiple-domains (Giorgi
2019; Wang et al. 2021). The higher resolution (20 km) rela-
tive to large-scale models enables the simulation of large-
scale phenomena that contains small-scale processes, such
as regionally localized features related to small-scale orogra-
phy. There were 23 vertical sigma layers, with the model top
at 50 hPa. In each direction, 12 grid points were allocated to
be used as a lateral buffer zone. The 6-hourly ERA-Interim
data developed by the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Dee et al. 2011) at a reso-
lution of 0.75° (at a~79-km grid spacing) were employed
to derive the initial and lateral boundary conditions for the
RegCM4-CLM4.5 runs. Sea surface temperatures (SSTs)
were provided by NOAA optimal interpolation weekly SST
data at a 1°x 1° resolution (Reynolds et al. 2002). The model
integration period of the four experiments spanned January

2005-January 2017, in which the first year (January—Decem-
ber 2005) was considered as spin-up time and excluded in
the analysis. The physical configuration of the four experi-
ments is summarized in Table 2.

We used the CNO05.1 gridded observational dataset with
a resolution of 0.25°x0.25° covering whole mainland
China (Wu and Gao 2013), which was interpolated from
over 2400 meteorological stations covering the period
1961-2017, as observations (OBS) to validate the simu-
lated surface air temperature and precipitation. The Inte-
grated Multi-satelliteE Retrievals satellite precipitation
product-global precipitation measurement (GPM) mission
(IMERG) (Hou et al. 2014), with a resolution of 0.1°x0.1°
and measurements every 30 min, was also chosen to evaluate
the model-simulated precipitation, especially for the diurnal
cycle. The GPM was launched in 2014, and the IMERG is
the successor of the multi-satellite 3B42 dataset from the
Tropical Rainfall Measuring Mission (TRMM) and has
been retrospectively processed back through the TRMM
era, beginning from June 2000 to the present (Huffman
et al. 2020). The half-hourly precipitation was aggregated
to determine the hourly and daily precipitation. Total cloud

Table 2 RegCM4 model

N . Contents
configuration and experimental

Description

settings in the study Domain

Horizontal grid
Vertical layers (top)

Planetary boundary layer

Cumulus parameterization scheme (CPS)

Land-surface hydrological scheme (LSHS)

Grid-scale precipitation
Ocean flux scheme

Lateral boundary condition
SST boundary condition
Simulation period

TP domain and surrounding area
224x152 (AX=20 km)

23 (50 hPa)

Holtslag

(1) Grell scheme
(2) MIT-Emanuel scheme

(1) TOPMODEL (CLM4.5)
(2) VIC (CLM4.5)

Subgrid explicit moisture scheme (SUBEX)
Zeng

ERA-Interim reanalysis (0.75°)

Weekly NOAA (1°)

January 2005-January 2017
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fraction and radiation data from the Clouds and the Earth’s
Radiant Energy System (CERES) Edition 4.1 Energy Bal-
anced and Filled (EBAF) data product (1.0°x 1.0°, March
2000-November 2019) (Loeb et al. 2018) was used to vali-
date the model-simulated energy balance. The bias in the
cloud fraction has been corrected based on observations
from Cloud—Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) and CloudSat (Kato et al. 2018).
Meanwhile, we also referred to the newly released ERAS
reanalysis dataset (0.25° % 0.25°,~31 km) from the ECMWF
(Hersbach et al. 2018) to evaluate the performance of the
RCM and to further identify the associated error sources.
The ERAS is an improvement over its ERA-Interim prede-
cessor in terms of a higher spatiotemporal resolution and the
capability to integrate ample amounts of reprocessed obser-
vations into global estimates using an advanced earth system
model and data assimilation system (Hersbach et al. 2020).
The other two satellite-derived datasets including evapotran-
spiration and surface soil moisture on the TP, available from
the National Tibetan Plateau Data Center (http://data.tpdc.
ac.cn/en/), were used to evaluate the simulations. Monthly
mean evapotranspiration with a resolution of 0.1° from 2001
to 2018 was estimated by the surface energy balance system
driven by the Moderate Resolution Imaging Spectroradiom-
eter (MODIS) satellite data and China Meteorological Forc-
ing Dataset, during which the accuracy of surface turbulence
fluxes was improved through implementing the sub-grid
orography drag scheme (Han et al. 2020). A random forest
method was used to produce a high-accuracy soil moisture
product (referred to as AMSR) a resolution of 0.25° from 20
June 2002 to 30 December 2018 by adopting the advanced
microwave scanning radiometer for earth observing system
(AMSR-E), the AMSR2, and tracking brightness tempera-
tures as well as related auxiliary data (Qu et al. 2019; Chai
et al. 2020).

Given that the climate sensitivities of the CPS and LSHS
are more connected with changes in hydrologic variables, we
mainly focused on the monsoon season (May—September),
during which 83.8% of the total precipitation occurs, accord-
ing to the GPM data. To facilitate comparison, the model
outputs, GPM precipitation data, ERAS data, and evapo-
transpiration data were bilinearly interpolated into a com-
mon resolution with the OBS grid. Given the effects on air
temperature of the elevation differences between the simula-
tions and reference data, the simulated air temperatures were
corrected with reference to the elevation of the OBS and
ERAS using a lapse rate of 0.65 °C 100 m™' (Li et al. 2013).
The regionally-averaged air temperatures and precipitation
during the wet season simulated by the RCM were evaluated
against observations by means of three statistical parameters,
including spatial correlation coefficient (SCOR), bias, and
root-mean-square error (RMSE). The simulated 3-hourly
precipitation was interpolated to 1-hourly precipitation on

@ Springer

a universal coordinated time (UTC) frame by a simple lin-
ear interpolation method between two timesteps. Then the
precipitation from the model simulations and GPM were
converted from the UTC frame to the Beijing time frame
(UTC + 8). Following Ou et al. (2020), precipitation fre-
quency for a given hour of day is defined as the percentage
of the total number of hours with measurable precipitation
(>0.1 mm h™') to the total non-missing hours during the
wet season; precipitation intensity is the cumulative hourly
precipitation for a given hour of the day divided by the total
number of hours with measurable precipitation during that
given hour of day in the wet season.

3 Evaluation of air temperature
and precipitation simulations

3.1 Spatial distribution of air temperature

The OBS and ERAS data revealed that air temperature
exhibits clear spatial patterns closely related to terrain, i.e.,
it is cold in high-altitude areas and warm in low-altitude
areas (Fig. 2). The RegCM4 could satisfactorily reproduce
the spatial patterns of air temperature (not shown), with
high SCORs (> 0.88) (Table 3). Compared with OBS, the
GTP yielded an overall temperature that was 0.1 °C warmer.
A significantly large cold bias was clearly evident on the
western TP, reaching — 7.0 °C, although a warm bias was
found over most of the TP. The RegCM4 configured with the
Grell scheme simulated slightly warmer temperatures, which
is consistent with our previous study using the same CPS
(Wang et al. 2016). Among the four simulations, the GTP-
simulated temperature was much closer to OBS, as indicated
by the smallest bias and RMSE. This suggests that the GTP
outperformed the other models in simulating air tempera-
ture. For the experiment with the MIT scheme (Fig. 2e), the
MTP simulated a lower temperature than OBS, exhibiting
a significant cold bias on the western TP and a warm bias
on the eastern TP. The cold bias was greater than that in
the simulation with the Grell scheme, while the warm bias
on the central TP was smaller. Therefore, the MIT scheme
tended to aggravate the cold bias but slightly alleviated the
warm bias. When configured with the VIC scheme (Fig. 2d
and f), the GVC model simulated warmer temperatures rela-
tive to OBS, while the MVC model simulated colder temper-
atures. Compared with the simulations of the TOP scheme,
the VIC scheme increased temperatures, especially on the
central and eastern TP, which enhanced the warm bias in that
region but helped offset the cold bias. In addition, configured
with the TOP scheme, the inter-model temperature differ-
ences caused by different CPSs were greater than those con-
figured with the VIC scheme, notably on the central-western
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Fig.2 Spatial distribution of air temperature from a OBS and b
ERAS, differences between simulations and OBS (¢ GTP-OBS, d
GVC-O0OBS, e MTP-OBS, f MVC-OBS), differences between simula-
tions and reference data (g GTP-ERAS, h MTP-ERAS) during the

TP. This suggests that there were some interactions between
CPSs and LSHSs impacting air temperature.

A number of uncertainties associated with the air tem-
perature simulation should be acknowledged. A distinct cold
bias appeared on the western TP, which is in accordance
with the previous studies based on the RegCM4 simulations

wet season (May—September). The mean differences for (g, h) are
labelled in the upper right corner of each panel. The dotted points
denote the difference significant at the 95% confidence level

(Gao et al. 2011; Wang et al. 2014, 2016; Gu et al. 2020).
Lower air temperatures on the western TP were caused by
the driving ERA-Interim (Wang et al. 2017), which prob-
ably passed the cold bias of the driving data to the RegCM4
simulations. The overestimated surface albedo discussed
below could also be responsible for the cold bias. Compared
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Table 3 Spatial correlation coefficient (SCOR), Bias, and RMSE between four groups of simulations and observed temperature (°C)/precipita-

tion (mm day~") over the TP during the wet season (May—September)

GTP GVC MTP MVC
SCOR 0.90/0.53 (0.77) 0.88/0.53 (0.75) 0.90/0.56 (0.70) 0.89/0.57 (0.69)
Bias 0.1/4.7 (4.1) 0.2/4.4 (3.8) —0.8/3.3 (2.9) —0.6/3.2 (2.7)
RMSE 2.4/5.9 (5.2) 2.7/5.7 (5.0) 2.8/4.4 (4.0) 2.9/4.3 (4.0)

The statistical values between the GPM precipitation data and model simulations are shown in brackets

to the eastern TP, lower air temperatures are concentrated
on the western TP (Fig. 2a and b) where higher altitudes
tend to generate a larger fraction of snow cover (Yang et al.
2019). The snow-albedo feedback exerts a stronger influence
on surface air temperatures on the western TP. Moreover,
uncertainties in the observation data could introduce bias,
since the observational network is fairly sparse on the west-
ern TP (Wu and Gao 2013; Wang et al. 2018).

The temperature difference between the GTP and ERAS
(Fig. 2g) roughly resembled that between the GTP and OBS,
although there was a smaller cold bias on the western TP and
a warm bias over a larger area. Overall, the regional average
temperature from the GTP simulation was 1.1 °C higher
than the ERAS data. A similar spatial pattern was also found
in the difference between the MTP and ERAS, although a
much smaller bias was presented, suggesting temperatures
of the MTP simulation were close to the ERAS data. The
temperature differences between the simulations with the
VIC scheme and the ERAS (figure not shown) and OBS
were also similar. The broadly consistent spatial pattern of
the temperature difference between the RCM simulations
relative to OBS and ERAS indicates that the ERAS dataset
as reference data can help interpret the physical processes
responsible for the RegCM4 performance, as described in
Sect. 4.

3.2 Precipitation
3.2.1 Spatial distribution of precipitation

Similar to air temperature, the spatial distribution of pre-
cipitation from the OBS, GPM, and ERAS data during the
wet season is presented in Fig. 3a—c. Jointly affected by the
Asian summer monsoon, westerlies, and local processes,
precipitation exhibits an evident spatial pattern, decreas-
ing from southeast to northwest. The RegCM4 captured the
observed spatial pattern (not shown) but simulated generally
higher precipitation than the observations. Compared with
the observed data (OBS and GPM), the GTP substantially
overestimated precipitation (Fig. 3al and bl), with an overall
bias of 4.1-4.7 mm day~! (Table 3). The bias was especially
strong on the southeastern TP, which has steep, complex
terrain and intense precipitation. There was a portion of the
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southwestern TP in which precipitation was underestimated,
and the areas with precipitation amounts similar to those of
the observed data were located in the Qaidam Basin and part
of the western TP. When using the MIT scheme (Fig. 3a3
and b3), the overestimation, particularly on the southeastern
TP, was largely reduced by the MTP model, although the
precipitation was still overestimated over most of the TP,
and the underestimation was slightly decreased. As a result,
the overall overestimation was reduced, by around 30%. In
addition, the models configured with the VIC scheme could
also reduce the wet bias, although the reduction was mainly
located on the northern and central TP, which receives mod-
erate precipitation amounts. For the MVC simulation, the
reduction in the wet bias, around 34% relative to the GTP
simulation, was more apparent on the western and south-
eastern TP compared to the other three simulations, indicat-
ing a significant improvement for precipitation simulation.
Although the MIT scheme could effectively remove some
wet biases, precipitation in the MVC simulation was still
overestimated, especially on the southeastern TP. Another
CPS, the Tiedke scheme (Kain and Fritsch 1993), has been
suggested to reduce precipitation bias, but it is often con-
fined to a limited area and leads to higher air temperatures
(Gu et al. 2020). Similar to temperature difference, when
configured with the TOP scheme, different CPSs caused
precipitation differences between models that were more
prominent than those configured with the VIC scheme.
This phenomenon also demonstrates that precipitation can
be influenced by the LSHS via the land—atmosphere interac-
tions discussed below.

Statistically, the SCORs between the model simula-
tions and the OBS (GPM) exceeded 0.53 (0.69) (Table 3),
suggesting that all models could reasonably reproduce the
spatial variability of precipitation on the TP. On the whole,
the MVC exhibited the best skill in simulating TP precipi-
tation during the wet season, as indicated by the smallest
bias and RMSE. The GTP and GVC generated noticeably
larger RMSEs than the MTP and MVC, highlighting the
importance of the CPS for precipitation simulation. There
were also some reductions in RMSEs between the model
simulations using the VIC scheme and the TOP scheme,
again indicating that the LSHS plays a role in precipitation
simulation.
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Fig.3 Spatial distribution of precipitation from a OBS, b GPM, and
¢ ERA5, differences between the model simulations and the reference
data (al-a4 for OBS, bl1-b4 for GPM, cl—4 for ERAS) during the
wet season (May—September). The mean differences for simulations

Most available stations are located in valleys and there
is a sparse observation network in the west of the TP. Thus,
accurate characterization of spatiotemporal precipita-
tion patterns is hampered. Here, the GPM (IMERG) was
jointly used as the reference data due to its better spatial

and ERAS are labelled in the upper right corner of each panel. The
dotted points denote the difference significant at the 95% confidence
level

coverage than station-based observations. Furthermore, the
GPM provides a uniform and gauge-calibrated dataset (Ma
et al. 2016; Wang et al. 2018), performing well in repro-
ducing probability density function and diurnal variability
of precipitation (Tang et al. 2016). The GPM IMERG V06
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agreed well with the observed daily precipitation over the
TP during 2000-2019 (Ma et al. 2021). However, some
studies have pointed out that the GPM data contains low
precipitation amounts (Kukulies et al. 2020), especially on
the western TP (Li et al. 2020) because of its large missing
ratio, especially for snowfall. The GPM-retrieved precipita-
tion outperforms the TRMM in detecting daily rainfall with
reference to ground-based stations (Xu et al. 2017), and the
underperformance (large false alarming ratio) of the TRMM
may have an influence on the overall accuracy of the GPM
data. Thus, the wet bias of the simulated precipitation can
be partly attributed to the underestimation of the GPM pre-
cipitation. In addition, the wet bias could be inherited from
its forcing-ER A-Interim, which overestimates precipitation,
especially on the southern and southeastern TP (Wang et al.
2017). This implies that, with the exception of modifying the
CPS, correcting the biases in the driving data is also crucial
for obtaining more accurate climate modeling.

The model simulations relative to the ERAS5 dataset dis-
played a spatial pattern of precipitation differences similar to
that of the observations (Fig. 3). Comparatively, the overes-
timation produced by the models was lower when compared
with the ERAS. In the GTP and GVC simulations, the sub-
stantial wet bias still existed and the area with underestima-
tion was expanded. Based on the comparison results, using
the ERAS dataset is considered appropriate for diagnosing
the precipitation bias of the model in the following analysis.

3.2.2 Comparisons of LSP and CP between the RegCM4
simulations

Simulated precipitation consists of large-scale precipitation
(LSP) and convective precipitation (CP). Their spatial dis-
tributions during the wet season as revealed by the ERAS
data are presented in Fig. 4al and a2. Similar to overall pre-
cipitation, LSP exhibits a marked spatial gradient, decreas-
ing from southeast to northwest, with minima located in
the Qaidam Basin and Qiangtang Plateau. There is also a
marked spatial gradient in CP, gradually decreasing from
south to north. The spatial distribution of the ratio of CP to
total precipitation reveals that CP contributes significantly
to total precipitation on the southern TP (Fig. 4a3); a maxi-
mum is clearly apparent on the southwestern TP (including
the Qiangtang Plateau), and another large area is located on
the southeastern TP. The average contribution is 53.7% over
the entire TP.

Compared with the ERAS data, the GTP simulation pro-
duced significantly higher LSP, particularly on the south-
eastern TP (Fig. 4b1). The overestimation (~ 112%) largely
contributed to the wet precipitation bias, during which LSP
accounted for 68% of the total precipitation in the GTP simu-
lation. With reference to CP in the ERAS data, the GTP sim-
ulated a smaller value over most of the TP, but still simulated
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a higher value on the southeastern TP (Fig. 4b2). The con-
tribution of CP to total precipitation in the GTP simulation
(32%) was lower than the ERAS data (Fig. 4b3). Meanwhile,
the MTP-simulated LSP was slightly higher than the ERAS
data, mainly on the eastern and southeastern TP, and there
was also some patchy overestimation of CP, situated between
90° E and 100° E. This comparison suggests that the overes-
timated LSP was significantly reduced by the MIT scheme,
and the overestimation of CP on the southeastern TP in the
GTP simulation was somewhat reduced by the MTP simula-
tion. In this case, the spatial distribution of the contribution
of CP to total precipitation in the MTP simulation was more
consistent with the ERAS data; specifically, the contribution
was enhanced to a proportion of 50% (Fig. 4d3).

Regarding the influence caused by the LSHS, the GVC-
simulated LSP was also higher than the ERAS5 data, but
lower than the GTP simulation. There was little difference
in LSP between the MVC and MTP simulations, meaning
that the VIC scheme could reduce the LSP overestimation,
and this reduction was more effective in the model configu-
ration with the Grell scheme. The VIC scheme could also
decrease CP, which benefits the case of CP overestimation,
such as the simulation with the MIT scheme, in which the
contribution of CP was slightly decreased. In comparison,
the VIC scheme had a larger impact on CP than LSP.

As for the contribution of CP to total precipitation, a
previous WRF simulation demonstrated that the contri-
bution of CP ranges from 70 to 80% on the central TP,
and approaches 100% in the Himalayas during the sum-
mer months (Maussion et al. 2014). The GPM 3GPROF
satellite precipitation product, however, provides a much
lower estimate of the contribution that varies between 10
and 40% on the eastern TP from May to September (Kuku-
lies et al. 2020). Our results revealed that the location of
the maximum CP contribution to precipitation was on the
central and eastern TP, which was in accordance with the
WREF simulation and the results of Sugimoto and Ueno
(2010). During the wet season, the maximum contribution
of CP to precipitation varied from 60 to 80%, the region-
ally-averaged contribution in the ERAS data was ~54%,
and the contributions in the simulations with the Grell and
MIT schemes were < 32% and ~50%, respectively. This
demonstrates that the contributions differ from previous
studies, i.e., the WRF simulation (Maussion et al. 2014)
and satellite data (Kukulies et al. 2020), and are some-
how dataset-dependent. One of the possible explanations
involves the different CPSs used and the satellite precipita-
tion retrieval algorithm. The WRF simulation used the new
Grell-Denvenyi 3 scheme (Maussion et al. 2014), while
the ERAS (Cy41r2) utilized the modified Tiedtke (1989)
scheme, including a complete revision of the entrainment
and coupling with the large-scale factors, to handle con-
vection (Hersbach et al. 2018). Meanwhile, the satellite
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Fig.4 Spatial distribution of a large-scale precipitation (LSP) and b
convective precipitation (CP) from ERAS, and differences between
the four simulations and ERAS, as well as ¢ ratio of CP to total pre-
cipitation from ERA5 and the four simulations during the wet season.

convective precipitation ratio primarily depends on the
horizontal and vertical structure of the radar signal (Kum-
merow et al. 2001; Kukulies et al. 2020). Hence, the CP
contribution estimates are still associated with a large
uncertainty which warrants further investigation.

5 mm day”’

0 10 20 30 40 50 60 70 80 90 100 %

The mean differences for simulations and ERAS are labelled in the
upper right corner of each panel. The dotted points denote the differ-
ence significant at the 95% confidence level

3.2.3 Diurnal cycle of precipitation
The diurnal cycle of precipitation was also analyzed to

comprehend the model bias. Figure 5 shows the spatial dis-
tribution of diurnal peak time for maximum precipitation
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Fig.5 Spatial distribution of diurnal peak time for maximum precipitation amount (a), frequency (b), and intensity (c) during the wet season
from the GPM and the model simulations with different combination of schemes

in the wet season over the TP. The GPM data shows that
the precipitation maximum mainly occurred in the late
afternoon to early evening (17:00-20:00 Beijing time,
the same thereafter) over most of the TP, and in the
early morning (00:00-03:00) in the Qaidam Basin and
the southern TP (Fig. 5a). Some areas such as the part
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of the western TP, the leeside of the Himalayas, and the
Nyenchen Tanglha Mountains exhibited late-night peak
of precipitation amount between 21:00 and 23:00. The
spatial pattern is basically consistent with the results of
previous studies (Kukulies et al. 2020; Ou et al. 2020)
using the same satellite data but with a short time period.
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The RegCM4 simulations largely reproduced the main
spatial pattern of diurnal peak time (17:00-20:00) for
maximum precipitation (Fig. 5bl-el). Besides, the simu-
lations with the Grell scheme also reproduced the satel-
lite observed late-night precipitation maximum between
21:00 and 23:00, but that’s not the case for the simula-
tions with the MIT scheme. In the dry Qaidam Basin and
the wet southern TP, the model simulations yielded later
peak times compared with the GPM data. For example,
in the Qaidam Basin, the Grell scheme simulated the pre-
cipitation amount peak in the morning (08:00) and early
afternoon (14:00), and the MIT scheme simulated the
peak in the early afternoon. Overall, with respect to the
Grell scheme, the MIT scheme produced more peaks in
the afternoon but less at the night. The peak time of pre-
cipitation amount was less affected by different LSHSs,
compared to that caused by changes in CPSs. Generally,
the VIC scheme increased peaks during the night (20:00
and 23:00) and decreased peaks in the afternoon (14:00)
relative to the TOP scheme.

The distributions of diurnal peak times of the most
frequent and intense precipitation were also compared
(Fig. 5a2—e3). Consistent with the previous study by Niu
et al. (2020), the spatial patterns of the peak time of precipi-
tation frequency resembled those of precipitation amount
in both the GPM and model simulations, suggesting pre-
cipitation frequency may contribute greatly to the phase of
the amount. A large difference existed for the simulatio