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Abstract 

The Tibetan Plateau (TP), known as Earth’s “Third Pole”, influences regional and even global 

weather and climate systems through its mechanical and thermal-dynamical forcing. Near-

surface (2 m) air temperature (Ta) and surface (skin) temperature (Ts) are two crucial parameters 

of land-atmosphere interactions and climate change. Their difference (△T=Ts–Ta) determines 

the heating source over the TP that drives the Asian summer monsoon. This study focuses on 

climatology, interannual variability, and long-term trend of △T over the TP in the last four 

decades (1979−2018), based on four latest reanalysis datasets including ERA-Interim, ERA5, 

MERRA2, and JRA55, along with observational data. We show that △T based different datasets 

display fairly different climatology in terms of seasonality, spatial distribution, and long-term 

trend. △T exhibits a clear seasonality with negative value in winter and positive ones in summer 

despite of different strengths and timings presented by the reanalyses. Along with global 

warming, all reanalyses except JRA55 exhibit obvious downward trends of △T in a spatially 

non-uniform way. The median △T among the four reanalyses features uniform decreases in all 

seasons, with the most distinct area on the northern TP as well as the largest and least decreases 

in autumn and spring, respectively. Further analysis shows that the differences in △T are most 

likely associated with discrepancies in radiation forcing, snow cover, wind speed, and boundary 

layer height within the reanalyses. The present findings highlight the difficulty for the state-of-

the-art reanalyses to represent the climate change over the TP and point to possible factors 

behind the deficiencies identified.  

 

Keywords: Tibetan Plateau; Air temperature; Surface temperature; Surface-air temperature 

difference; Reanalysis dataset 
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1. Introduction 

There is a hydrologically and energetically coupled relationship between the land-surface 

and the lower atmosphere (Seneviratne et al., 2010; García-García et al., 2019). Changes of 

atmospheric variables directly alter land-surface status by means of changes in atmospheric 

circulation, air temperature, precipitation, winds, and clouds. Land-surface condition variations 

in terms of albedo, snow cover, soil moisture, and vegetation trigger the changes of surface 

energy partition and water balance, which finally exert impacts on atmospheric processes (e.g., 

Koster et al., 2004; Wang et al., 2016; Feng and Zou, 2019; Frick and Tervoore, 2019). Near-

surface air temperature (Ta) and surface (skin) temperature (Ts) are both important parameters 

of the Earth’s energy budget, land-atmosphere interactions, and climate change. Ta describes 

the kinetic energy of the near surface atmosphere and has a significant influence on evaporation, 

humidity, wind, and precipitation types. Ts is found to differ with Ta with respect to both 

physical meaning and magnitude (Jin and Dickinson, 2010; Rongali et al., 2018) and is 

controlled by downward terrestrial radiation, and therefore, by surface heat flux exchanges with 

the atmosphere. The land-atmosphere coupling is extremely complex and variable in both space 

and time, and its strength is often linked with extreme climate events such as heat weaves, 

droughts, and heavy rainfall, and so forth (Seneviratne et al., 2010; Zhang and Wu, 2011), 

which impact heavily on social life and economical activities. 

The Tibetan Plateau (TP), often referred to as Earth’s “Third Pole”, is the world highest 

plateau with an average elevation of > 4000 m and an area of ~2.5 × 104 km2 and exerts a 

considerable effect on regional and even global weather and climate systems through its 

mechanical and thermal-dynamical forcing (Wu et al., 2014). With global warming, Ta and Ts 

have increased obviously but with differing rates on the TP (Zhong et al., 2011) because of 

complex underlying surface turbulence and atmospheric motions. Ta and Ts are usually 

interdependent of and coupled to each other (Chen et al., 2016). They are complementary in 

their contribution of helpful knowledge to the study of climate change (Jin and Dickinson, 
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2010). The indicator of surface-air temperature difference (Ts–Ta, △T) is an exceedingly 

important variable that influences regional and even global climate and environment (Stull, 

1998), as well as land-atmosphere interactions (Zhang et al., 2011). Previous studies have 

attempted to employ △T to conduct remote sensing retrieval of energy fluxes on the TP (Zhang 

et al., 2015) and to assess the capability of climate model (Koven et al., 2013). Compared with 

other regions at same Northern Hemisphere latitudinal zone, the TP acts as a huge heat source 

to the atmosphere (Duan and Wu, 2008; Yang et al., 2011), mainly through sensible heat flux 

(SHF). Driven by the heating, normally termed as sensible heat driven air-pump (Wu et al., 

2012, 2014), the water vapor and air mass in the low-level atmosphere around the plateau are 

pumped to the TP during spring and summer. △T is also a direct and main contributor to SHF 

which plays a crucial role in the seasonal transition, onset, and maintenance of the Asian 

summer monsoon, affecting precipitation in China (Wu et al., 2014). Therefore, deep 

understanding of the spatial patterns and variations of △T over the TP is of great importance 

for elucidating their influence on SHF and heat source.  

The entire TP has poor coverage of meteorological stations, most of which are 

concentrated on the central and eastern TP and low altitude areas (Yang et al., 2019). This 

makes it difficult and speculative to comprehend key processes crucial to regional climate and 

land-atmosphere interactions (Chen et al., 2015). Meanwhile, for routine Ts meteorological 

observation, China Meteorological Administration widely adopted automatic observation to 

replace previous manual observation after 2005. As the difference in criterion exists between 

the two methods, Ts recorded by automatic stations is generally higher in winter when snow 

cover exists than by manual observation (Liao et al., 2019). Ts is measured at the 0-cm level, 

mainly reflecting the bare land skin temperature, but the central and eastern TP is actually 

covered by vegetation (Zhu et al., 2012). Thus, there remains a large uncertainty in Ts from 

meteorological stations. And the observed △T do not reflect negative value and the well-known 

cold source over the TP during winter and may overestimate the summer heat source (Liao et 
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al., 2019). This severely hampers our understanding of the regional △T change. These factors 

all motivate us to adopt alternative dataset which can provide much better geographic coverage 

and supporting climate variables. 

Thereinto reanalysis products become increasingly acceptable and have been in vogue to 

be used by a greater number of scientists since it can best describe long-term and large-scale 

thermo-dynamical state of the atmosphere (Gao et al., 2019). By combining in-site observations 

and remote sensing data into an atmospheric model via data assimilation, model processes are 

constrained as much as possible to the real atmospheric state. This improved reliability enables 

attractive applications for reanalysis data in a series of scientific studies (Hinkelman, 2019). 

The prevalent reanalysis data with high-resolution performs well in reproducing the TP climate 

variables. For instance, MERRA has a high correlation with observations of surface 

meteorological variables (Wang and Zeng, 2012). ERA-Interim data shows relatively small 

cold bias in Ta (Wang et al., 2017) and better performance in water cycle (Wang and Zeng, 

2012), as well as SHF on the TP (Chen et al., 2019). 

Compared to the individual variable, either Ta or Ts, the spatial-temporal patterns of △T 

are more complicated (Feng and Zou, 2019). In recent years, numerous studies suggested that 

the SHF over the TP has undergone a weakening trend (e.g., Duan and Wu, 2008; Wang et al., 

2013; Duan et al., 2018), which is attributed to the decreased surface wind speed (Duan and 

Wu, 2008). However, there has been relatively little systematic research on another important 

contributor △T over the TP, in particular, including its seasonality, interannual variability, and 

long-term trend. The objectives of this study are to identify these based on latest multi-source 

reanalysis datasets, and to further investigate possible causes for the discrepancies in △T among 

the reanalyses. 
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2. Data and evaluation strategy 

2.1 Reanalysis datasets 

Four reanalysis products containing Ts and 2-m Ta (hereafter referred to simply as Ta) are 

comprehensively used in the study (Table 1), since they are the latest generation and state-of 

the-art reanalyses. Monthly Ta and Ts are obtained from the Europe Centre for Medium-Range 

Weather Forecasting (ECMWF) ERA-Interim (hereafter ERAI) with a spatial resolution of ~ 

79 km or ~ 0.75° for the period 1979-2018. The ERAI is an updated version of the ERA40 

reanalysis and utilizes the data assimilation system of the Integrated Forecast System (Cy31r2). 

Besides, ERAI employs a 4-dimensional variational analysis (4D-Var) and has improved 

variational bias correction of satellite derived radiance data as well as humidity analyses and 

model physics (Dee et al., 2011).  

Recently, ECMWF has developed its fifth-generation reanalysis product, namely ERA5 

(the successor to ERAI) with a spatial resolution of ~ 31 km or ~ 0.25° (Hersbach et al., 2018). 

Relative to the former ERAI, substantial changes have been made for ERA5 in terms of higher 

temporal and spatial resolutions. ERA5 integrates ample amounts of reprocessed observations 

(satellite, ozone, aircraft, and surface pressure data) into global estimates using advanced Earth 

system model and data assimilation system of the IFS (Cy41r2).  

In a reanalysis, a skin layer represents the vegetation layer, the top layer of the bare soil, 

or the top layer of the snow pack in its land surface model. Ts indicates the temperature at the 

interface between the land and atmosphere. In the ECMWF reanalysis family Ts is physically 

acquired from the surface-atmosphere energy balance of the land surface model, which 

connects the surface with the lowest atmospheric level through dry static energy, moisture and 

thermal contact with a single four-layer soil profile (or one layer if snow exists) (Dee et al., 

2011). 

Another reanalysis is the Modern-Era Retrospective analysis for Research and 

Applications, version 2 (MERRA2), which is released by the NASA Global Modeling and 
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Assimilation Office. MERRA2 has a native spatial resolution of 0.5° × 0.625° and is available 

from 1980 onwards. Modern hyperspectral radiance and microwave observations, as well as 

GPS-Radio Occultation datasets are incorporated into the NASA’s Goddard Earth Observing 

System, version 5 (GEOS-5) via the GSI assimilation system (Gelaro et al., 2017). Thanks to 

these advances, many aspects in MERRA2 have been updated, including the representation of 

the cryosphere, Ta, and global mean radiative fluxes (Hinkelman, 2019). MEERA2 Ts is from 

the Catchment land surface model, a component of the GEOS-5, and assimilation system 

(Draper et al., 2018).  

In addition, we also make use of the Japanese 55-year Reanalysis (JRA55; 1.25° × 1.25° 

grid) conducted by the Japan Meteorological Agency (Kobayashi et al., 2015). Ts is represented 

by the brightness temperature in JRA55, which is computed from surface upward longwave 

radiation assuming that surface acts as a black body. Similar to ERAI, JRA55 incorporates 

snow observations over the TP region.  

To investigate the differences in ΔT variations among reanalyses, downward shortwave 

and longwave radiations (DSR and DLR), snow depth, wind speed at 10 m above ground level 

(WS), and boundary layer height (BLH) are extracted from the corresponding reanalysis 

datasets. Following Orsolini et al. (2019), snow depth is converted to snow cover fraction (SCF).  

2.2 Observational datasets 

Two sets of ancillary observational data of 2-m Ta are also utilized. Observational CN05.1 

gridded data (hereafter CN05, a spatial resolution of 0.25° × 0.25°) covering the TP is used, 

which is interpolated based on 2416 stations in China (Wu and Gao, 2013). It has been widely 

used in the validation and evaluation of climate simulations and climate change (Guo et al., 

2018; Wang et al., 2016, 2018). For comparison purpose, another monthly Ta data is obtained 

from the gridded observations CRU (Climate Research Union) with a spatial resolution of 0.5° 

× 0.5° produced by University of East Anglia (Mitchell and Jones, 2005). Likewise, the gridded 

temperatures are interpolated from quality-controlled meteorological station data based on a 

This article is protected by copyright. All rights reserved.



presumed correlation decay distance. Furthermore, we also resort to the monthly satellite land 

surface temperature (LST) data–that is MODIS/Terra MOD11C3 Collection 6 covering the 

time period from February 2000 to December 2018 at 0.05° spatial resolution (Wan et al., 

2015)–as a reference data to manifest the performance of the reanalysis products in Ts.  

2.3 Evaluation strategy 

Since the time spans of these reanalysis datasets are somewhat different, this paper simply 

focuses on the common time period 1979-2018 (40 years) except for MERRA2 starting from 

1980 and for CN05 and CRU being used until 2016 and 2017, respectively. Due to different 

spatial resolutions (Table 1), for the spatial distribution and trend of the median △T among the 

four reanalyses, we interpolate Ts and Ta into a common resolution of 1.5°×1.5° based on the 

bilinear interpolation method, although this may obscure some of the added value of high-

resolution data and introduce some errors because of complex climate and underlying surfaces. 

The performances of the four reanalysis datasets in Ta and Ts are evaluated prior to the △T 

analyzing. To examine the statistical difference of the two variables, significance test for the 

difference △T is implemented using the two-tailed Student’s t test (Wilks, 2006). Linear 

regression trends based on the least-squares method are also applied for regional averaged 

winter (December–February, DJF), spring (March–May, MAM), summer (June–August, JJA), 

and autumn (September–November, SON) climate variables. The significance test for the linear 

trend is performed using the two-tailed Student’s t test (Santer et al., 2000). 

The median of the multi-reanalysis products is computed, which can reduce the influence 

by extremely large and small values (Wang et al., 2019). Relationships (r) between climate 

variables (DSR, DLR, SCF, WS, and BLH) and △T within the same reanalysis product are 

detected using the Pearson correlation analysis. We also use the seasonality and long-term 

trends of climate variables, together with the correlations to explain the differences in ΔT 

among the reanalyses. 
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3. Climatology of △T from multi-source reanalyses 

3.1 Evaluation of Temperature (Ta and Ts)  

We first compare climatological annual cycle of Ta from observations (CRU and CN05) 

and reanalyses (Figure 2). All reanalyses reproduce reasonably well the annual changes of Ta. 

Ta in ERAI is slightly higher than the observations, consistent with the result of Wang et al. 

(2017). Yet other three reanalyses have a negatively bias partly due to the fact that most of 

meteorological stations record warm temperature since they are concentrated in inhabited 

valleys. 

Intercomparisons among the reanalyses show that ERA5 produces relatively cold 

temperatures, particularly in winter (Figure 2a, Table S1). Topography may play a vital 

influence on near-surface temperature. There are evident elevation differences among these 

reanalyses (Figure 1). A noted fact is that much finer resolution model can better depict 

topography and likely generates high terrain, leading to a cold temperature. Nevertheless, 

coarse resolution modeling generates relatively low and flat terrain, resulting in a warm 

temperature. Between the ECMWF family reanalyses, ERAI has a better performance in 

reproducing snow depth over the TP (Orsolini et al., 2019). It is due to the fact that snow cover 

from Interactive Multisensor Snow and Ice Mapping System (IMS) was considered by ERAI, 

even in high altitude regions, including the TP, whereas IMS data above 1500 m was not 

assimilated in the production of ERA5, resulting in overestimated SCF and days on the TP, 

nearly 3 times of observed data (Orsolini et al., 2019). Consequently, ERA5 most likely 

simulates much stronger albedo effect of snow, forming cold temperature. This feature is more 

obvious in cold season (Table S1). Compared with CN05, MERRA2 and JRA55 have small 

biases and RMSE, ERAI performs best in Ta except for DJF series.  

When it comes to Ts, though appreciable differences exist, the annual change is 

consistently reproduced by the four reanalyses. Warmest Ts is produced by MERRA2 across 

the whole year (Figure 2b), coldest by JRA55 during summer, ERA5 still tends to yield cold Ts 
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with exception of summer when it shares nearly similar Ts with ERAI (Table S1). These 

differences may be attributable to numerous factors, such as diverse land surface schemes, 

atmospheric models, and observational data assimilating sources (Table 1). Land surface 

schemes which emphasize different land surface processes-such as vegetation, snow melting 

process, and soil water-heat transfer-simulate diversified partition of surface energy (Yang et 

al., 2009; Wang et al., 2014, 2016). Additionally, atmospheric models’ resolution and physics 

design, together with the use of data assimilation system have large impacts on atmospheric 

circulations and surface energy and water budgets. In comparison with MODIS LST, all 

reanalysis data generate warmer Ts in JJA but colder ones in the rest of the seasons. JRA55 

forms much closer Ts with MODIS data in DJF and JJA, while MERRA2 shows the best 

performance in MAM (Table S1). Considering above comparisons, no reanalysis clearly stands 

out as the best performing one for all seasons and variables, and each of the reanalyses displays 

different biases. It is highlighted that combined utilization of reanalysis data with various data 

sources is beneficial for understanding the TP ΔT changes. 

3.2 Spatial-temporal distribution of ΔT 

Figure 2c shows the climatological annual cycle of ΔT over the TP. Overall highest ΔT is 

attained by MERRA2, lowest ΔT by ERA5 during winter (reaching up to -3.7 °C) and spring 

and by ERAI during transitional seasons. Although there are some differences in the 

magnitudes of ΔT among the four reanalyses, the variations are basically consistent. However, 

the timing of the peak has a disagreement across the reanalyses. ΔT in MERRA2 and JRA55 

peak in June, one month earlier than the ECMWF family of reanalyses. These may reflect 

inconsistencies in the activity and onset of summer monsoon among these reananlyses. The 

median of the four reanalyses shows that ΔT has strong seasonal variability, with maximum in 

JJA (1.7 °C) and minimum in DJF (-1.8 °C).  

In terms of the spatial distribution (Figure 3), CN05 and all the reanalyses indicate that the 

TP has a large-scale negative Ta and ΔT in DJF, suggesting an obvious cold source over the TP 
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in winter. From the ECMWF datasets, substantial negative ΔT occur over high mountains, such 

as the Karakorum Mountains, the Himalayas, the mountains in the southeastern TP, and the 

Qilian Mountains. More details are generated by ERA5 because of its higher resolution. Unlike 

the ECMWF reanalyses, MERRA2 produced large ΔT mainly appear along the Himalayas and 

in the Qilian Mountains. In spite of sharing approximately the similar spatial resolution, the 

result of ΔT between ERAI and MERRA2 is quite diverse. JRA55 shows large ΔT appearing 

on the northwestern TP. The median exhibits the strongest cold source (Figure 3f), as indicated 

by the most negative ΔT.  

In MAM, Ta gradually increases, the spatial patterns of △T manifested by the four 

reanalyses are quite different. Positive △T in the ECMWF begin to appear over the western TP 

and the Qaidam basin, while negative ones still exist in the southeastern TP and the Himalayas 

with decreased strengths. MERRA2 shows entirely positive △T on the TP. As for JRA55, 

positive △T is located on most of the TP. The median resembles the spatial pattern of ECMWF 

reanalyses (Figure 3l), but the regional mean △T quickly turns into positive value (Table S2), 

signifying a shift to a heat source for the TP.  

As Ta turns entirely positive in JJA, the four reanalyses reveal similar pattern with positive 

ΔT over the vast majority of the TP. Large ΔT are located in the western and northern TP, and 

some part in the southern TP. MERRA2 has totally positive ΔT and the largest value, while 

ERAI and JRA55 possess the same and smallest ΔT (Table S2). The median result indicates 

higher ΔT appears in the western TP than in the eastern TP, yet smallest ΔT in the southeastern 

TP where monsoon precipitation occurs frequently, reducing Ts and ΔT (Figure 3r). The median 

ΔT is the highest among four seasons, denoting the heat source reaches its greatest strength in 

JJA. 

As solar radiation weakens (Ta decreases accordingly) and the monsoon withdraws, ΔT 

decreases rapidly from JJA to SON and then quickly transforms into negative values, with a 

regional averaged value of -0.3 °C. It means that the heat source reduces its strength. 
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Discrepancies of inter-reanalysis are appreciable, which is comparable to those in MAM. The 

median displays negative ΔT in the southeastern TP and positive value in the northwestern TP 

(Figure 3x).  

3.3 Interannual variation of ΔT 

Figure 4 shows the spatial distribution of seasonal trends in Ta and ΔT over the TP. CN05 

reveals significant increasing trends in Ta in all four seasons, with highest in DJF and smallest 

in JJA. ΔT change varies spatially among these reanalyses. The two ECMWF reanalyses show 

a large area of decreasing trend in △T, most notably in the northeastern TP, while somewhat 

increasing trend appears in the western TP, the Himalayas, and the southeastern TP. 

Comparatively high decreasing trend is represented by ERAI, especially in DJF and SON. With 

exception of DJF, MERRA2 displays a spatial pattern marked by an increasing trend in the 

western TP but a decreasing trend in the eastern TP. Areas with negative and positive trends 

account for approximately half of the TP, respectively. On the contrary, JRA55 presents distinct 

increasing trends in △T particularly during DJF apart from the northern TP. Overall, △T in the 

median presents widespread downward trends across the four seasons with the most prominent 

area occurring in the northern TP, while somewhat upward trends are observed in the western 

and southeastern TP. 

The time series of seasonal average △T for the whole TP from the reanalysis products 

exhibit marked discrepancies (Figure 5). The ECMWF reanalyses, especially ERAI, present 

significantly decreasing trends in △T. MERRA2 gives almost invariable trends in DJF and 

MAM but slightly decreasing trends in the remaining seasons. As to JRA55, there are 

significantly increasing trends, especially in DJF. Moreover, △T time series of the reanalyses 

exhibit large fluctuations in DJF and MAM, indicating large year-to-year variability. Similar 

decreasing trends are also reported by NCEP reanalysis data (Chen et al., 2019). Taken together, 

the median △T has decreased significantly in four seasons from 1979 to 2018 (Table S2), in 

accord with the decline of SHF (Wang et al., 2013; Duan et al., 2018) and the reduction of 
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heating ability in recent decades (Yang et al., 2011). The largest decrease occurs in SON at a 

rate of 0.045 °C decade -1, while the least decrease appears in MAM at a rate of 0.037 °C decade 

-1.  

4. Why ΔT are different in the reanalyses? 

Several complex interactions for the TP rapid warming have been detected in recent 

decades. For instance, the TP warming is due to CO2 increase (Chen et al., 2003). Locally, 

radiation balance caused by snow albedo feedback imposes great impacts on Ta and Ts (e.g., 

Chen et al., 2017; Gao et al., 2019; Guo et al., 2020). WS decline lessens the Bowen ratio and 

generates less surface sensible heating, accounting for the TP warming (Yang et al., 2014). In 

this section, downward radiation forcing, SCF, WS, and BLH are used here to investigate the 

causes of the differences in △T among the reanalyses. 

4.1 Downward radiation forcing 

Radiation forcing (DSR and DLR) are expected to have dominant influences on △T as 

they are the control factors of temperature. Figure 6a shows scatterplot of downward radiations 

versus △T. Both DSR and DLR have significantly positive correlations with △T. This indicates 

that strong downward radiation forcing tend to generate a positive △T, vice versa. Furthermore, 

DLR has a larger impact on △T than DSR in terms of higher correlation coefficient except for 

MERRA2, mainly because there is similar seasonal evolution between DLR and △T, i.e. 

highest in JJA and lowest in DJF (Figure 6d). MERRA2 has stronger DSR and reaches its peak 

in June, which can impose great influence on △T, such as large positive △T and advanced peak 

time. Over time, DSR has a significant decreasing trend and DLR has an increasing trend in 

JJA, the increases of DLR in the reanalyses except for JRA55 are weaker than the decreases of 

DSR (Table 2), thus causing the decreases in △T. However, it is exactly the opposite for JRA55. 

In DJF and MAM, DSR and DLR display slightly positive trends over the past 40 years but 

exert complicated influences on △T because of their intensities and snow cover.  

4.2 Snow cover  
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A prior study suggested that the albedo effect is governed by SCF (Xu and Dirmeyer, 

2012). To examine the effect of snow cover on △T, we plot the correlation map between SCF 

and △T over the TP on monthly time scale (Figure 7a). There are negative correlations between 

monthly SCF and △T. It means large (small) SCF appears to yield negative (positive) △T. 

Climatologically, the large △T generally occur at high altitudes where large SCF appear (Figure 

7b). During cold season, high snow cover tends to reflect solar radiation, leading to a lower Ts 

and a more negative △T, and vice versa. Among the four reanalyses, ERA5 generates the 

highest SCF over the TP, followed by JRA55, ERAI, and then MERRA2, in accord with the 

result of Orsolini et al. (2019). That helps to explain ERA5 has large negative ΔT in DJF and 

MAM. In the case of MERRA2, the smallest SCF is more likely to lead to less negative ΔT, 

and the rapid response of ΔT to SCF is partly the cause for ΔT’s dramatic transition from 

negative in DJF to positive in MAM. For JRA55, the response of △T to SCF is slow from snow 

season to snow free season (JJA).  

Snow cover has been reported to have reduced over the past decades (Yang et al., 2019), 

characterized by greater decreasing magnitudes in DJF and MAM than in JJA (Table 2). High 

elevation warming is ascribed to snow cove/ice-albedo feedback. Accordingly, some increases 

of ΔT in high-elevation areas revealed by ECMWF reanalyses are likely associated with the 

decrease of SCF in DJF and MAM. For JRA55, notably reduced SCF in DJF together with 

increased radiation forcing act to cause a large increase in △T. Large year-to-year variability of 

the snow cover among the reanalyses may contribute to the great diversity of △T.  

4.3 Wind speed (WS) 

WS is a dynamic factor affecting the exchange of turbulent heat fluxes. Since WS can 

affect land surface energy balance through evapotranspiration and surface heat flux, and WS 

change is constrained by processes that have a scale beyond the atmospheric boundary layer 

(Yang et al., 2014). WS also exhibits a strengthening-weakening seasonal variation from DJF 

to SON, with a maximum value in MAM (Figure 8b), meaning that the peak time of WS is 
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ahead of △T. Among the reanalyses, MERRA2 has the largest WS, while JRA55 has the 

smallest WS. At the monthly scale, negative correlations suggest that high WS is likely to 

produce small △T (Figures 8a). In terms of WS change, the reanalyses reach a consistent result 

that shows increases in JJA and SON, which are in agreement with the decreases of △T. 

Between the ECMWF reanalyses, having nearly similar variation tendencies of DSR and DLR 

in SON, the decreases of △T are very different, partly due to the obvious difference of WS 

variation (Table 2).  

4.4 Boundary layer height (BLH) 

The development of planetary boundary layer is strongly relevant to convection activity 

and complex surface forcing containing SHF, frictional drag, evapotranspiration, and terrain-

induced flow modification (Stull, 1988). The effective heat capacity, resolved by the air column 

with mixed heat, influences Ta to some degree. This heat is determined by a surface heat flux 

and runs through the PBL. The shallower BLH, the lower effective heat capacity and the more 

sensitive Ta is to forcing (Esau et al., 2012). BLH is missing in JRA55, thus the correlations are 

calculated using the other three reanalysis products (Figure 9a). Positive correlations between 

monthly BLH and ΔT imply large BLH results in positive ΔT. The largest ΔT is generated by 

MERRA2 in JJA and the smallest by ERA5 in DJF (Figure 9b), corresponding to their 

respective largest BLH and smallest BLH. A strongly amplified temperature response can be 

obtained in shallow boundary layers (Davy and Esau, 2016). In a warming climate, obvious 

decreasing trends in BLH are found in ERAI in the four seasons, which amplifies Ta warming 

response and causes the decreases of △T. In JJA, BLH have reduced significantly in all 

reanalyses, contributing to the △T decreases (Table 2).  

5. Summary and discussion  

The study utilizes Ts and Ta data from four recent and state-of-the-art reanalysis datasets 

(ERAI, ERA5, MERRA2, and JRA55) to reveal spatiotemporal variability of △T over the TP 
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from 1979 to 2018. The TP △T exhibits a strong seasonal cycle with negative value in DJF and 

positive value in JJA, suggesting the seasonal transition from heat sink to heat source. However, 

there are significant differences in terms of peak time and strength of △T among the reanalyses. 

Under climate warming, apart from JRA55, the reanalyses present decreasing trends of △T in 

a spatially non-uniform way over the studied period. Generally, the median of the four 

reanalyses exhibits significantly negative trends across four seasons with the most pronounced 

area in the northern TP and the largest decrease in SON as well as the least decrease in MAM.  

The decreases in △T during DJF and SON suggest the strength of the TP cold sources have 

enhanced and increased near-surface temperature inversion have suppressed air convection and 

mixing. These results of decreasing △T are in favor of the decline of SHF, implying that the TP 

heat sources in MAM and JJA have reduced their strength, which may exert significant 

influences on the monsoon onset and intensity.  

The differences in the spatiotemporal variability of △T among the reanalyses are relevant 

with radiation forcing, SCF, WS, and BLH at different intensities and time scales (mainly 

seasonality and interannual variability). Overall, △T is positively correlated to DSR and DLR 

as well as BLH, but negatively correlated to SCF and WS. Additionally, other causes, such as 

precipitation, vegetation condition, and soil moisture may also play important roles. Ts is 

response to wetting and drying cycles of soil, which are heavily modulated by precipitation. 

The vegetation is normally denser in wetter region. The vegetation types and their description 

in the reanalyses are remarkably different (Xie et al., 2019). ERA5 and MERRA2 adopt 

seasonally varying vegetation index to represent vegetation dynamics, but do not allow 

vegetation to change annually. Moreover, the existing reanalyses do not depict vegetation 

changes explicitly in the TP. These aspects should be kept in mind in future research. 

Given high heterogeneity among reanalysis products covering the climatology of △T at 

the seasonal and interannual time-scales, using the reanalyses to represent climate change is not 

yet mature and should be refined in the future. Meanwhile, the different usage of data in 
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assimilation system such as snow data in the ECMWF reanalyses, and the diverse physical 

parameterizations, i.e. land surface and boundary layer schemes, allow highlighting the 

importance of incorporating more satellite data and station observations into assimilation 

system and optimizing model parameterizations. Although interrelationships between 

influencing factors and △T are performed based on the identical reanalysis source to alleviate 

errors from different datasets, inherent biases are still inevitable. Therefore, a quality-controlled 

database containing various variables corresponding to Ts and Ta should be generated in future 

research to verify the results and further explore their difference and coupling. What’s more, 

regional climate models-based research is required to enhance understanding of the regional 

details, as topographic features and their crucial effects on regional climate are not well resolved 

in coarse-resolution GCMs/reanalyses (Gao and Chen, 2017; Giorgi, 2019), as well as to 

estimate the impacts of dynamic vegetation and soil moisture.  
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Figure caption 
Figure 1 Topography (m) of the TP described by the four reanalyses. The elevations of the 

longitudinal average over 72°E-106°E are shown to the right of each map. 
Figure 2 Climatological annual cycles of air (Ta) and surface (skin) temperature (Ts) and their 

differences (ΔT= Ts−Ta) during the period 1979-2018 for all data sets utilized, except 
for MODIS data which spans from 2002 to 2018. The dark green line in Figure 1c 
shows the median of the four reanalyses. The shading area indicates the 25th-75th 

percentile ranges in the multi-reanalyses. 
Figure 3 Spatial distribution of seasonal mean air temperature (Ta, °C) from CN05 and surface-

air temperature difference (ΔT, °C) over the TP between 1979 and 2018 revealed by 
ERAI, ERA5, MERRA2, JRA55, and the median of the four reanalyses. The dotted 
areas indicate ΔT exceeding the 95% confidence level.  

Figure 4 Spatial distribution of seasonal trends (°C decade-1) in Ta from CN05 and ΔT from 
ERAI, ERA5, MERRA2, JRA55, and the median among the four reanalyses on the 
TP during 1979 and 2018. The dots denote the trends exceeding the 95% confidence 
level.  

Figure 5 Anomalies of temperature difference (ΔT) in four seasons of the four reanalyses and 
their median. The black dash line indicates linear regression of median. The shading 
area indicates the areas between 25% and 75% percentiles. The trends in Ta from 
CN05 and ΔT from the four reanalyses are labeled in each panel. * and ** indicate 
the trends exceeding the 95% and 99% confidence level, respectively.  

Figure 6 Relationship between monthly △T and downward shortwave radiation (DSR), 
downward longwave radiation (DLR) from four reanalysis data sets and averaged 
annual cycles of DSR and DLR on the TP. ** indicates the correlation coefficients 
exceeding the 95% confidence level, respectively.  

Figure 7 As Figure 6, but for snow cover fraction (SCF).  
Figure 8 As Figure 6, but for 10-m wind speed (WS). 
Figure 9 As Figure 6, but for boundary layer height (BLH). BLH is not available in JRA55. 
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Table 1 Information of datasets used in the study. E: elevation; DSR: downward shortwave 
radiation; DLR: downward longwave radiation; SD: snow depth; BLH: boundary layer 

height, WS: 10-m wind speed 
 Spatial 

resolution  
Variables Atmospheric 

model 
Land surface 

model 
Time span Reference 

 0.25° Ta - - 1961.01-2017.6 Wu and Gao,  
 0.5° Ta - - 1901.01-

2017.12 
Mitchell and   

 0.05° Ts - - 2000.02-
2018.12 

Wan et al., 20  

 0.75° Ta, Ts, E, DSR, DLR, SD, WS, BLH IFS Cy31r2 TESSEL 1979.01-
2019.08 

Dee et al., 20  

 0.25° Ta, Ts, E, DSR, DLR, SD, WS, BLH IFS Cy41r2 H-TESSEL 1979.01-present Hersbach et a   
 0.5° × 0.625° Ta, Ts, E, DSR, DLR, SD, WS, BLH GEOS 5.12.4 Catchment LSM 1980.01-present Gelaro et al.,  

 1.25° Ta, Ts, E, DSR, DLR, SD, WS JMA GSM SIB 1958.01-present Kobayashi et   
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Table 2 Trends of seasonal DSR (W m-2 decade-1), DLR (W m-2 decade-1), SCF (decade-1), WS (m 
s-1 decade-1), and BLH (m decade-1) on the TP. * denotes the trend passes the significance level of 

0.05. 
Season Variable ERAI ERA5 MERRA2 JRA55 
DJF DSR 0.58* 0.43* 0.40 0.02 

DLR 0.40 0.75* 0.91* 2.26* 
SCF -0.010* -0.014 -0.001 -0.037* 
WS -0.01 -0.02* -0.03* 0.00 
BLH -4.57 10.85 9.00  

MAM DSR -0.03 -0.48 -1.57* -0.81* 
DLR 0.65 0.88* 1.60* 1.54* 
SCF -0.008* -0.016* -0.001 -0.001 
WS -0.02 -0.03 -0.10* -0.05 
BLH -5.03 0.26 -0.85  

JJA DSR -3.11* -2.53* -3.40* -3.65* 
DLR 2.39* 2.42* 3.32* 4.04* 
SCF -0.002 -0.006* 0.000 0.001 
WS 0.04 0.02 0.02 0.02 
BLH -15.60* -7.13* -12.31*  

SON DSR -0.51 -0.54 -0.73 -0.80* 
DLR 1.37* 1.43* 2.08* 1.51* 
SCF 0.000 -0.009 0.000 -0.013 
WS 0.03* 0.00 0.02 0.02 

 BLH -6.09 3.04 1.58  
DSR: downward shortwave radiation; DLR: downward longwave radiation; SCF: snow cover 

fraction; WS: wind speed; BLH: boundary layer height. 
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Figure 1 Topography (m) of the TP described by the four reanalyses. The elevations of the longitudinal 
average over 72°E-106°E are shown to the right of each map. 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Peer Review Only

 

Figure 2 Climatological annual cycles of air (Ta) and surface (skin) temperature (Ts) and their differences 
(ΔT= Ts-Ta) during the period 1979-2018 for all data sets utilized, except for MODIS data which spans from 
2002 to 2018. The dark green line in Figure 1c shows the median of the four reanalyses. The shading area 

indicates the 25th-75th percentile ranges in the multi-reanalyses. 
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Figure 3 Spatial distribution of seasonal mean air temperature (Ta, °C) from CN05 and surface-air 
temperature difference (ΔT, °C) over the TP between 1979 and 2018 revealed by ERAI, ERA5, MERRA2, 

JRA55, and the median of the four reanalyses. The dotted areas indicate ΔT exceeding the 95% confidence 
level. 
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Figure 4 Spatial distribution of seasonal trends (°C decade-1) in Ta from CN05 and ΔT from ERAI, ERA5, 
MERRA2, JRA55, and the median among the four reanalyses on the TP during 1979 and 2018. The dots 

denote the trends exceeding the 95% confidence level. 
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Figure 5 Anomalies of temperature difference (ΔT) in four seasons of the four reanalyses and their median. 
The black dash line indicates linear regression of median. The shading area indicates the areas between 

25% and 75% percentiles. The trends in Ta from CN05 and ΔT from the four reanalyses are labeled in each 
panel. * and ** indicate the trends exceeding the 95% and 99% confidence level, respectively. 
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Figure 6 Relationship between monthly △T and downward shortwave radiation (DSR), downward longwave 
radiation (DLR) from four reanalysis data sets and averaged annual cycles of DSR and DLR on the TP. 
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Figure 7 As Figure 6, but for snow cover fraction (SCF). 
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Figure 8 As Figure 6, but for 10-m wind speed (WS). 
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Figure 9 As Figure 6, but for boundary layer height (BLH). BLH is not available in JRA55. 
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