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ABSTRACT

Variations in extreme precipitation can be described by various indices. In order to evaluate a climate model’s

ability to simulate extreme precipitation, gridded extreme precipitation indices from observations are needed.

There are two ways to obtain gridded extreme precipitation indices from station-based observations: either

through interpolation of station-based extreme indices (EISTA) or estimated from gridded precipitation

datasets (EIGRID). In this work, we evaluated these two methods and compared observational extreme

precipitation indices in China to those obtained from a set of widely used global climate models. Results show

that the difference between the two methods is quite large; and in some cases it is even larger than the difference

between model simulations and observed gridded EISTA. Based on the sensitivity of the indices to horizontal

resolution, it was suggested that EIGRID is more appropriate for evaluating extreme indices simulated by

models. Subsequently, historic simulations of extreme precipitation from 21 CMIP5 (Coupled Model

Intercomparison Project Phase 5) global climate models were evaluated against two reanalysis datasets during

1961�2000. It was found that most models overestimate extreme precipitation in the mountain regions in

western China and northern China and underestimate extreme precipitation in southern China. In eastern

China, these models simulate mean extreme precipitation fairly well. Despite this bias, the temporal trend in

extreme precipitation for western China is well captured by most models. However, in eastern China, the trend

of extreme precipitation is poorly captured by most models, especially for the so-called southern flood and

northern drought pattern. Overall, our results suggest that the dynamics of inter-decadal summer monsoon

variability should be improved for better prediction of extreme precipitation by the global climate models.
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1. Introduction

Detecting and predicting extreme climate events are

important topics in climate sciences due to their great

impact on humans and economies (Kunkel et al., 1999;

Easterling et al., 2000; Meehl et al., 2000). In particular,

extreme precipitation is one of the most important vari-

ables for practical needs, but it is difficult to define

precisely due to its weak spatial coherence (Frich et al.,

2002; Alexander et al., 2006).

China is frequently hit by extreme precipitation events

(e.g. floods and droughts), causing enormous economic loss

and societal disruptions (Zhai et al., 2008). For instance,

the floods in 1998 caused $36 billion in economic losses and

killed more than 3000 people in the Yangtze River valley in

southern China and in the Nenjiang-Songhuajiang valley

in North-east China (NCC, 1998). The frequency of such

events is likely to increase in association with climate

warming (Gong and Wang, 2000; Qian et al., 2007; Feng

et al., 2011). To predict future change in extreme precipita-

tion events, an understanding of the recent past is required,

in addition to improving the fidelity of global climate

model and future forcings.

Global climate models provide a basis to project the

future change in extreme precipitation events (McAfee

et al., 2011; Timm et al., 2011; Xu et al., 2011), but there

are large uncertainties in model projections (IPCC, 2012).

Before assessing projections into the future, it is there-

fore essential to evaluate the models’ performances in
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simulating extremes with respect to observations. In

particular, because of limitations associated with the spatial

distribution and homogeneity of station observations, we

need a reasonable metric to compare observed extremes

with those simulated. For instance, a simple average of

stations available in an area represented by a model grid

could lead to a bias if there is an unequal spatial density of

stations. To overcome this problem, Frich et al. (2002)

selected approximately one station every 250000 km2 to

get an evenly distributed station network of observations.

But since the selected stations in this approach can be

subective, gridded datasets are to be preferred when

examining regional trends and evaluating model simula-

tions (Kiktev et al., 2003; Alexander et al., 2006).

Extreme precipitation events are often described by

indices based on precipitation rate (Moberg et al., 2006)

and for many scientific purposes and practical convenience,

such indices are often needed on regular grids. Then

precipitation extremes estimated from station-based obser-

vations have to be converted to grid values, i.e. real-

averaged indices. In general, there are two ways to obtain

gridded extreme precipitation indices from station observa-

tions (Chen and Knutson, 2008):

(1) By calculating extreme precipitation indices from

daily observations for all available stations, and then

interpolate the stations extreme indices into different

horizontal resolutions (this method will henceforth

be referred to as EISTA).

(2) By interpolating daily station observations into

different horizontal resolutions (area-mean precipi-

tation) and subsequently calculating extreme pre-

cipitation indices based on the gridded precipitation

(EIGRID hereafter). A previous study suggested that

the difference between the two approaches can be

significant (Chen and Knutson, 2008).

Both approaches have been widely used to evaluate

model-simulated extreme precipitation indices in China

(e.g., Jiang et al., 2009, 2011; Xu et al., 2009, 2011; Feng

et al., 2011; Li et al., 2011). A comparison of simulated

precipitation extremes from ECHAM5 (T319, 0.375�
0.3758) with observations based on EIGRID, showed that

the model overestimated extreme precipitation by more

than 30% for most parts of China (Feng et al., 2011).

Conversely, when compared to observations based on

EISTA, the simulated extreme precipitation in China was

in general underestimated (Jiang et al., 2011). Moreover,

all models used by the IPCC AR4 tend to underestimate

extreme precipitation during summer in eastern China by

as much as 50% (Li et al., 2011), which has implications for

regions such as North-east China where most of the extreme

precipitation occurs during summer (Bai et al., 2007).

Clearly, to what extent the difference in extreme precipita-

tion indices created by the two different methods influences

model-observation comparisons still needs to be quantified.

Although such differences were previously noted by Jiang

et al. (2009), only very general features about the range

of the difference was given in their work. Moreover, an

increase in the spatial resolution of a model may improve its

ability to more adequately simulate extreme precipitation

(Kharin et al., 2005; Chen and Knutson, 2008), but the

influence of grid-cell size on gridded extreme precipitation

has not been adequately investigated.

This study focuses on finding a suitable gridding method

for analyzing observed extreme precipitation, and then

evaluating the performance of global climate models using

observations in China. Specifically, the objectives of this

study are:

(1) To quantify the scaling effect on gridded extreme

precipitation indices in China by examining the

influence of changes in grid-cell size (ranging from

0.5�0.58 to 4�48), and to explore the difference

between gridded extreme indices from EISTA and

EIGRID.

(2) To evaluate the simulated climatological mean and

linear trend of a number of extreme precipitation

indices from 21 CMIP5 (Coupled Model Intercom-

parison Project Phase 5) global climate models

(Taylor et al., 2012) against two reanalysis datasets,

NCEP/NCAR reanalysis I (Kalnay et al., 1996) and

ERA40 reanalysis (Uppala et al., 2005), using

gridded extreme precipitation indices from EIGRID

on the same resolution.

2. Data and methods

2.1. Observation and reanalysis datasets

We used daily observations from 592 out of 753 stations in

China, those containing less than 1 yr of missing values, for

the 1961�2000 period. This is the same dataset used by

Chen et al. (2010). The locations of the stations are shown

in Fig. 1. The station density in East China is much higher

than that in West China. Particularly in the western part

of the Tibetan Plateau the station density is sparse, and

consequently stations in this region (south of 378N, west of

888N, see Fig. 1) were not used in this analysis. The 592

station observations were interpolated onto a 0.5�0.58
grid system by using ordinary kriging with four seasonal

semi-variograms (more details about the procedure can be

found in Chen et al., 2010). The 0.5�0.58 gridded

precipitation was subsequently averaged into grids with

progressively lower resolution in 0.58 step: 1�1, 1.5�1.5,

and so on to the lowest resolution of 4�48. Since the island
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area south of 218N is relatively smaller compared to the

grid-cell sizes for relatively course resolutions of used

climate model datasets, only grids north of 218N were

considered for both observations and model simula-

tions. Daily precipitation from NCEP/NCAR reanalysis I

(Kalnay et al., 1996) and ERA40 reanalysis (Uppala et al.,

2005) was used as references in the observation�simulation

comparisons.

2.2. Precipitation indices

We choose 10 precipitation indices previously used by

Alexander et al. (2006) and Moberg et al. (2006) (Table 1).

Two of the 10 indices, the simple daily intensity index (SDII)

and the annual total wet-day precipitation (PRCPTOT),

are indices representing average precipitation conditions.

In particular, differences in trends between SDII and

PRCPTOT reflect changes in the character of precipitation

(Moberg et al., 2006). Therefore these two indices are very

useful to understand variations in extreme precipitation and

to assess global climate models’ simulations of extreme

precipitation. Thus, all the indices used here are referred to

as extreme indices for the sake of simplicity in this article.

The FClimDex software, obtained from http://cccma.

seos.uvic.ca/ETCCDI, was used to calculate the precipita-

tion indices. Two versions of gridded extreme precipitation

indices were calculated based on different methods named

EISTA and EIGRID. For EISTA, the selected indices were

calculated for each of the 592 stations, and subsequently

the station indices were interpolated onto a 0.5�0.5 grid

using the inverse distance (power 2) method. The data were

first interpolated onto an 18 km�18 km grid, and then the

value for the 0.5�0.58 grid was obtained by averaging all

18 km�18 km grid values falling into the 0.5�0.58 grid.
Finally, the 0.5�0.58 grid indices were aggregated into

grids with progressively lower resolution according to the

approach described above. For EIGRID, the extreme indices

Fig. 1. Geographic location of the 592 stations with daily precipitation during 1961�2000 over Mainland China. (The western Tibet

Plateau region (south of 378N, west of 888E, shaded box) contains few instrumental observations and was excluded in the comparison

between model simulations and observations).

Table 1. Definition of the 10 precipitation indices used (most of them indicate extreme precipitation conditions)

CDD Consecutive dry days: maximum length of dry spell, maximum number of consecutive days with precipitation (R)B1 mm/day

CWD Consecutive wet days: maximum length of wet spell, maximum number of consecutive days with R]1 mm/day

R10 mm Annual count of days when R]10 mm/day

R20 mm Annual count of days when R]20 mm/day

R95pTOT Amount of precipitation in very wet days precipitation (R95pTOT ¼
P

R, where R�R95 (R95 is the 95th percentile of

precipitation on wet days in the 1961�90 period))

R99pTOT Amount of precipitation in extremely wet days (R99pTOT ¼
P

R, where R�R99 (R99 is the 99th percentile of precipitation

on wet days in the 1961�90 period))

R�1 day Maximum 1-day precipitation amount

R�5 day Maximum consecutive 5-day precipitation amount

PRCPTOT Annual total wet-day precipitation (PRCPTOT ¼
P

R)

SDII Simple daily intensity index (SDII ¼ PRCPTOT=WD, WD is the total number of wet days (R]1 mm/day))
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were directly calculated from the interpolated daily gridded

precipitation on different resolutions from 0.5�0.58 to

4�48.
The CMIP5 experiments address outstanding scientific

questions that arose during the preparation of the IPCC

AR4 (Taylor et al., 2012). There are mainly three groups of

simulations based on the major purposes: one for evalua-

tion and the other two for projections and estimating

feedbacks. The historical ensemble simulations, belonging

to the evaluation simulations (Taylor et al., 2012), were

used in this work.

Data from 21 CMIP5 global climate models (Table 2),

with daily precipitation available during 1961�2000, were
used to evaluate model-simulated extreme precipitation in

China. The historical ensemble simulations of the first

realisation of the first version of models (r1i1p1) were used

in this study. The same 10 indices as above (Table 1) were

calculated from simulated daily precipitation for each

model. In order to evaluate the model-simulated extreme

indices, 0.5�0.5 gridded precipitation was also aggregated

into grids with the same resolution as the respective model.

Then the model-simulated indices were compared with the

corresponding observed indices at the same resolution.

2.3. Scaling effect on extreme precipitation

Since the increase in grid-cell size affects the distribution

of daily precipitation for a selected grid point, changes of

grid-cell size can influence the accumulated percentage of

extreme precipitation. Consequently, the mean conditions

of different extreme indices will change following the

increase of grid-cell size. In order to examine the magnitude

of the scaling effect, empirical cumulative distribution

functions (ECDF) (Rice, 1995) was calculated for each

grid-cell at the different resolutions. The ECDF of a time

series is calculated as follows:

FnðxÞ ¼
1

n
ð#xi � xÞ (1)

where x is the selected threshold of daily precipitation

amount, xi indicates the daily precipitation amount of the

i-th day of a selected grid point and n is the total number of

days. The number of days with precipitation less than, or

equal to, the given value x are counted. Then, FnðxÞ ¼ k=n

if there are k days with daily precipitation less than, or

equal to, the given value x. Consequently, the cumulative

percentage of extreme precipitation days (CP-ExtrP, units:

%), which is greater than the selected threshold x, can be

written as

CP� ExtrPð>xÞ¼½1� FnðxÞ��100 (2)

3. Results

3.1. Influence of grid size on extreme indices

An example is shown in Fig. (2a and b) for the central grid

point at 110.58E, 25.58N. There are four 0.5�0.58 grids

Table 2. Horizontal resolution (longitude�latitude in degrees) of the 21 CMIP5 global climate models used

Model Institute/country Atmosphere resolution

MIROC4h MIROC/Japan 0.5625�0.5616

CCSM4 NCAR/United States 1.2500�0.9424

MRI-CGCM3 MRI/Japan 1.1250�1.1215

CNRM-CM5 CNRM/France 1.4063�1.4008

MIROC5 MIROC/Japan 1.4063�1.4008

HadGEM2-ES MOHC/United Kingdom 1.8750�1.2500

HadGEM2-CC MOHC/United Kingdom 1.8750�1.2500

INM-CM4 INM/Russia 2.0000�1.5000

IPSL-CM5A-MR IPSL/France 2.5000�1.2676

CSIRO-Mk3.6.0 CSIRO/Australia 1.8750�1.8653

MPI-ESM-LR MPI-M/Germany 1.8750�1.8653

FGOALS-s2 IAP/China 2.8125�1.6590

NorESM1-M NCC/Norway 2.5000�1.8947

GFDL-CM3 NOAA/United States 2.5000�2.0000

GFDL-ESM2G NOAA/United States 2.5000�2.0225

IPSL-CM5A-LR IPSL/France 3.7500�1.8947

MIROC-ESM-CHEM MIROC/Japan 2.8125�2.7906

MIROC-ESM MIROC/Japan 2.8125�2.7906

CanCM4 CCCMA/Canada 2.8125�2.7906

BCC-CSM1.1 BCC/China 2.8125�2.7906

HadCM3 MOHC/United Kingdom 3.7500�2.5000
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within one 1�18 grid. The ECDF value for the 1�18 grid
can be apprehended in two ways: either by calculating the

ECDF for the 1�18 grid-cell directly (ECDF11�1), or by

calculating the ECDF from the four 0.5�0.58 grids

separately, and then averaging these (ECDF10.5�0.5). The

influence of grid-cell size on the ECDF is assessed by

comparing the two ECDFs.

In this particular example, the cumulative percentage of

dry days (daily precipitation less than 18mm) in ECDF11�1

is smaller than in ECDF10.5�0.5, while the cumulative

percentage of low-precipitation days (daily precipita-

tion greater than 1 mm but less than the precipitation at a

change point) in ECDF11�1 is greater than that in

ECDF10.5�0.5. The change point is defined as the point

Fig. 2. Empirical cumulative distribution function (ECDF) of 1�18 grid-cell centered at (110.58E, 25.58N) as an example (a)

(ECDF11�1 indicates the ECDF of 1�18 by calculating the ECDF for the 1�18 grid box directly, ECDF10.5�0.5 indicates the ECDF of

1�18 by averaging the ECDFs of all 0.5�0.58 grids falling in 1�18 grid-box), and (b) shows the difference between two types of ECDF of

1�18 (ECDF11�1�ECDF10.5�0.5) in (a).

Fig. 3. The relationship between annual total precipitation and the change of cumulative percentage of dry day (prep51 mm)

(CCP-DryDay) for four resolutions (CCP-DryDay is the difference of cumulative percentage of dry day for i�i8 (i indicates 1, 2, 3
and 4, which means four different resolutions from 1�18 to 4�48) between the cumulative percentage of dry day calculated from i�i8
precipitation directly and the mean of the cumulative percentage of dry day of all the 0.5�0.58 grid falling in the i�i8 grid-box)
(a), (b) same as (a) but for the change of cumulative percentage of extreme precipitation day (CCP-ExtrP) with daily precipitation

higher than 20 mm, and (c) same as (b) but for daily precipitation higher than 10 mm.
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Fig. 4. (Continued)
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where the cumulative percentage in ECDF11�1 changed

from less than that in ECDF10.5�0.5 to greater than that

in ECDF10.5�0.5. It can be regarded as the threshold

between low-precipitation and high-precipitation (pre-

cipitation larger than the precipitation at the change

point) days. The cumulative percentage of high precipita-

tion in ECDF11�1 is smaller than that in ECDF10.5�0.5

indicating that the cumulative percentage of heavy pre-

cipitation, especially extremely high precipitation, de-

creases with increasing grid-cell size. From this example, it

is clear that the cumulative percentage of precipitation in

different grid-cells will change in three directions with

increasing size of the grid-cell: the number of dry days will

decrease, the number of low-precipitation days will in-

crease, and the number of high- (or heavy) precipitation

days will decrease. The scaling effects on the precipita-

tion distribution are similar for most grid-cells, with only

a few exceptions where precipitation rates are extremely

low.

The change in the cumulative percentage of dry and

extreme precipitation (�20 mm/d: R20 mm) days with

respect to an increase in the grid-cell size (1�18, 2�28,
3�38 and 4�48) and to the annual total precipitation are

examined in Fig. 3. It is clear that the percentage of dry and

R20 mm d decreases with increasing grid-cell size. There is

also a decreasing trend going from the west (dry region) to

the east (wet region). The linear trend of the decrease in the

accumulative percentage of dry days following an increase

in annual mean grid-cell precipitation is 1.0, 3.6, 6.2 and

8.9% per 1000 mm for resolutions of 1�18, 2�28, 3�38
and 4�48, respectively (Fig. 3a). It should be mentioned

that there were some grid-cells, especially in the desert

region in western China, where the percentage of dry

day increased with increasing grid-cell size, but this is

mainly due to the extremely low number of days with

precipitation�1 mm/d in this region. The linear trend of

the decrease in the accumulative percentage of R20 mm d

following an increase of annual mean grid precipita-

tion is 0.08, 0.33, 0.70 and 1.06 per 1000 mm for re-

solutions of 1�18, 2�28, 3�38 and 4�48, respectively
(Fig. 3b).

Following the accelerated decreasing trend of accumu-

lative percentage of dry and R20 mm d against the increase

of annual total grid-cell precipitation with increasing grid-

cell size (Fig. 3a and b), days with daily precipitation�

10 mm (R10 mm) decreased in the dry regions and

increased in the wet regions (Fig. 3c). Further, the

amplitude of the decreasing or increasing trends increased

with increasing grid-cell size.

3.2. Difference between gridded extreme indices

based on EISTA and EIGRID

From the earlier analysis, it is clear that with increasing

grid-cell size, dry and very wet (heavy precipitation) days

will decrease, while the number of low-precipitation days

will increase, which means that the change in grid-cell

size will have an effect on the extreme precipitation indices

for the grid-cell.

Next, the difference between gridded extreme precipita-

tion indices from EISTA and EIGRID at different resolutions

is examined. The results from eight different grid-cell sizes

are shown in Fig. 4. Compared to the gridded indices from

EISTA, all indices from EIGRID, except for CDD and CWD,

decrease linearly with increasing grid-cell size. The differ-

ence between extreme precipitation indices from EISTA
and EIGRID is quite large, especially for larger gird-cells

(lower horizontal resolution). Taking SDII as an example,

the differences between the two methods range from 21

to 32% (from 0.5�0.58 to 4�48). A previous compari-

son between modelled and observed extremes in China

by Jiang et al. (2011) found that the simulated ensemble

mean of SDII was 27% lower (18�32% lower for differ-

ent models with different resolutions) than observa-

tions from EISTA. Our results show that the difference

between EISTA and EIGRID is even larger than the dif-

ference between model simulations and observations (from

EISTA).

Among all indices examined, CDD is least influenced by

variations in grid-cell size. This is understandable, since

CDD indicates long lasting dry conditions which normally

occur over a relatively large area. Thus, the difference

between CDD from EISTA and EIGRID is small. CWD

generally increases with increasing grid-cell size, mainly

due to the increased number of wet days in wet regions, as

discussed in Section 3.1. This coincides with decreasing

precipitation intensity (SDII decreases following an in-

crease of grid-cell size) and a reduced change in total

Fig. 4. Comparison between extreme precipitation indices based on EISTA (Blue) and EIGRID (Red) over Mainland China with 8

different horizontal resolutions (0.5�0.5, 1�1, 1.5�1.5, 2�2, 2.5�2.5, 3�3, 3.5�3.5, and 4�4 degree) for the 10 indices (a�j)
listed in Table 1. The Box�Whisker plots show the statistic characteristic of the indices at the selected resolution during 1961�2000.
The lower, middle and upper lines of the box show the lower quartile (Q1, QL is the value of Q1), median (Q2), upper quartile (Q3, QU

is the value of Q3) respectively, while the ends of the whiskers shows the lowest datum still within 1.5 interquartile range (IQR, IQR �
QU-QL) of the Q1, and the highest datum still within 1.5 IQR of the Q3. Data fall below QL�1.5�IQR or above QU�1.5�IQR have

been shown as outliers.
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precipitation (PRCPTOT). The difference of CDD between

EISTA and EIGRID is quite small and can be ignored: hence

CDD can be regarded as an index which, on average, is

fairly independent on grid-cell size.

In general, the ratio of all the indices between EISTA
and EIGRID increases with the increase in grid-cell size

(not shown). At the same time, it is obvious that the

differences in extreme indices between EISTA and EIGRID,

Fig. 5. Comparison of extreme indices from 21 CMIP5 global climate models, multi-model ensemble (MME) and two reanalysis (Red)

and gridded observation based on EIGRID with the same resolution (Blue) over Eastern China (south of 218N is not counted) for 10

precipitation indices (a�j) (Same Box�Whisker Plots as in Fig. 4 have been used).
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except for CDD, are so large that it cannot be ignored.

Based on the sensitivity of index to horizontal resolution

change, we conclude that its better to use EIGRID to

evaluate the model-simulated extreme indices, which is in

agreement with the results obtained by Chen and Knutson

(2008).

Fig. 6. Same as Fig. 5, but for western China (the west Tibet Plateau region (south of 378N, west of 888E) is not included).
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4. Model-simulated extreme indices

4.1. Simulated mean condition

Following the above analysis, the CMIP5 models perfor-

mances in simulating mean condition of extreme precipita-

tions was evaluated using the extreme indices from EIGRID

at the same resolution as the selected models. Due to the

fact that the atmospheric circulation and topography are

quite different in western and eastern China, the model-

simulated annual mean extreme precipitations are evalu-

ated separately for eastern (Fig. 5) and western (Fig. 6)

China.

Generally, extreme precipitation is better reproduced

in eastern China compared to that in western China. The

results of multi-model ensemble (MME) agree better with

observation compared to individual models, as expected

(Wang et al. 2012). Regarding the reanalysis datasets, the

extreme indices from ERA40 in general agree better with

the observations compared with those from NCEP, which

was previously found by Ma et al. (2009). The climatology

of CDD (CWD) is generally underestimated (overesti-

mated) for both eastern and western China. This indicates

that the climate models tend to overestimate the number

of wet days, especially those with moderate precipitation

rates. About 30% of the models reproduce mean CDD and

CWD conditions more accurately in eastern China than in

western China. In eastern China most models reproduce

the extreme precipitation quite well: R10 mm d are

generally well reproduced, but 1/3 of the models tend to

underestimate R20 mm d. Models with higher resolutions

tend to simulate more extreme precipitation (R95pTOT

and R99pTOT) and higher rain intensity (R�1day and

R�5day). Total precipitation (PRCPTOT) is mainly over-

estimated, while rain intensity (SDII) is better reproduced

Fig. 7. Relative error of mean R95pTOT during 1961�2000 for two reanalysis (a, b), multi-model ensemble (MME) (c) and 21 CMIP5

global climate models (d�x) (units: % of observation values).
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with relatively large model uncertainty. In western China,

all extreme indices, except CDD, are overestimated by the

investigated models. Overestimation of precipitation is a

common feature for global climate models (e.g. Su et al.,

2013).

From the earlier analysis, it is evident that there are large

differences in the reproduced extreme precipitation. Next,

we compare the spatial patterns of simulated and observed

extreme. The spatial pattern of the difference between

simulated and observed extremes is generally the same for

all the selected extreme precipitation indices, except for

CDD. Here only the spatial patterns of the difference

between simulated and observed R95pTOT (Fig. 7), one

widely used index to illustrate the extreme precipita-

tion, and CDD (Fig. 8) are shown. All models and

reanalysis datasets simulated higher extreme precipitation

(R95pTOT) and less CDD in western China and northern

China, and less extreme precipitation and more CDD in

South-east China. The largely overestimated precipitation

around the boundary region of the Tibetan Plateau may

be due to the difficulty for models to correctly describe

the influence of the topography (Feng et al., 2011). The

difference between simulated R95pTOT and observation in

Tarim and Jungar basins may have to do with the fact that

these regions have few observations (Feng et al., 2011).

The relatively poor performance of the climate models in

western China is most likely due to the low occurrence of

extreme precipitation and rain days in this region compared

to eastern China (Fu et al., 2008).

Most of the models simulate less (more) extreme pre-

cipitation in South-east (North-east and West) China

compared to the observations (Fig. 7), and the pattern

coincides with the pattern of CDD for most of the models,

with more CDD linked with less extreme precipitation and

Fig. 8. Same as Fig. 7, but for CDD.
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vice versa. The overestimated extreme precipitation in

northern China and underestimated extreme precipitation

in southern China lead to seemingly fairly reproduced

extreme precipitation in eastern China.

4.2. Temporal trend of simulated extreme

precipitation

We further evaluated the linear trend of the simulated

extreme precipitation during 1961�2000 to see if the climate

models could simulate the observed change over the period.

Owing to the reasons mentioned in Section 4.1, only the

spatial patterns of linear trend of R95pTOT (Fig. 9) and

CDD (Fig. 10) are shown. Indeed, the general patterns of

the linear trend of all extreme indices, except for CDD, are

quite similar to those of R95pTOT, especially in East

China. The linear trend of the simulations was compared

with the gridded indices from EIGRID with 2.5�2.58
horizontal resolution.

The observed R95pTOT has an increasing trend in most

parts of China, except in northern China where the extreme

precipitation decreased, during 1961�2000 (Fig. 9c). This

pattern is called southern flood and northern drought

pattern (Wang et al., 2012). The difference in trends of

Fig. 9. Linear trend of R95pTOT during 1961�2000 (units: % per 10 yr) for two reanalysis (a, b), gridded observation based on EIGRID

at 2.5�2.58 resolution (c), multi-model ensemble (MME) (d) and 21 CMIP5 global climate models (e�y).
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extreme precipitation for northern and southern China has

previously been discussed by Qian et al. (2007), who

attributed the pattern to the weakening of the East Asian

monsoon. The observed increasing trend of extreme pre-

cipitation in North-west China is well captured by most of

the models, but the trends in South-east and northern

China are poorly reproduced (Fig. 9). This is also true for

the result of an MME, where the sign of the linear trend is

well reproduced in western and North-east China, but the

sign of the simulated linear trend in eastern China is

opposite to that of the observation.

The observed CDD shows decreasing trends in North-

west and North-east China and an increasing trend in

eastern China from 1961 to 2000 (Fig. 10c). This spatial

pattern is clearly illustrated by the first Empirical Ortho-

gonal Function pattern of CDD from 1961 to 2000 (Xu

et al., 2011), which indicates that the observed change of

CDD is dominating. The sign of the linear trend of CDD

from the MME agrees quite well with the observation,

except for North-east China and part of Xinjiang province.

Generally, the observed linear trend of CDD is opposite

to the trend of R95pTOT (Figs. 9c and 10c), but in South-

east China, the R95pTOT and CDD both increased during

1961�2000. The simulated linear trend of CDD is opposite

to the trend of R95pTOT in the study area (Figs. 9 and 10).

The same trend of CDD and R95pTOT in South-east

China is poorly captured by most of the investigated

models.

Fig. 10. Same as Fig. 9, but for CDD.
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5. Discussion and conclusion

As can be seen from Fig. 3, the cumulative percentage of

R20 mm d decreases all over China with an increase in

grid-cell size. But when the cumulative percentage of R10

mm d is concerned, no systematic biases can be seen. This

indicates that the influence of grid-cell size mainly affects

heavy precipitation rates. As a result, the difference of

R20 mm d between the two methods (EISTA and EIGRID) is

larger than that of R10 mm d (Fig. 4c and d). The same

is true for R95pTOT and R99pTOT (Fig. 4e and f).

From Fig. 4, it is clear that the average of indices within

the study area from EISTA, which should be insensitive to

variation in horizontal resolution, changes with the in-

crease in grid-cell size (decreasing horizontal resolution).

This is mainly due to the way of dealing with the grid-cells

that lie on the boundaries, i.e. those which are partly within

and partly outside the study area where there are no

observations in the neighbouring grid-cells outside the

study area, and is especially evident at lower resolutions

(bigger cells). Likely the results from EISTA will not display

such conspicuous differences along with changes in grid-

cell size if all the grids are located within the study area.

Further studies of how to deal with boundary cells are

needed, especially for relatively large grid-cells.

The increasing trend of extreme precipitation in west

China is relatively well captured by most of the models. As

pointed out by Gao et al. (2002), the number of rain days in

northwest China would significantly increase under global

warming, and possibly this is the case for most of western

China. That the greenhouse effect is well simulated in the

global climate models could be the reason for the good

agreement. However, when it comes to eastern China,

where weather and climate are largely influenced by the

East Asian monsoon system (Qian and Lee, 2000; Ding and

Chan, 2005), the difference in trends of extreme precipita-

tion in northern and southern China (Zhai et al., 2005;

Qian et al., 2007) is poorly captured. This may be due to

the difficulty to accurately represent the inter-annual and

inter-decadal variations of the summer monsoon in this

region by the models, as illustrated by Gu and Li (2010).

The East Asian summer monsoon has weakened since

the end of 1970s (Wang, 2001; Yu et al., 2004). Associated

with the weakening tendency, precipitation decreased in

northern China but increased over the middle and lower

reaches of the Yangtze River valley (Hu et al., 2003; Yu

et al., 2004; Yu and Zhou, 2007), which may have led to a

decrease of extreme precipitation in northern China and an

increase in southern China, especially along the Yangtze

River valley (Qian et al., 2007). As pointed out by Zhou

et al. (2009), the East Asian summer monsoon has the

lowest reproducibility and is the most poorly modelled of

the Asian�Australian monsoon subsystems, based on

the model simulation from the CLIVAR International

‘‘Climate of the twentieth century (C20C)’’ Project. The

reason is mainly due to the failure of specifying historical

sea surface temperature (SST) in capturing the zonal land-

sea thermal contrast change across the East Asia. On the

other hand, a well reproduced monsoon circulation does

not necessarily lead to reasonable simulation of rainfall

(Zhou and Li, 2002; Sperber et al., 2012), which indicates

that other factors such as model physics related to

precipitation processes most likely play a role too.

In addition to the impact of the East Asian summer

monsoon, the significantly increased aerosol concentra-

tions produced by air pollution may have reduced the light

rain events in eastern China (Qian et al., 2009), which could

be related to the increase in CDD in eastern China. The

combined effects of the weakening of the East Asian

Monsoon system and the increase of aerosols could have

led to the increase of both CDD and heavy precipitation in

southern China, but in northern China, CDD increases

with the decrease of extreme precipitation. Moreover, the

natural variability related to the Pacific Decadal Oscillation

(PDO), which is strongly associated with precipitation in

China (Shen et al., 2006; Ma, 2007), is not well resolved in

global climate models (Furtado et al., 2011). This will also

lead to the bias of global climate model in reproducing

extreme precipitation in China. Consequently, improved

monsoon dynamics and model physics for reproducing

monsoon rainfall should be emphasised in the future

development of global climate models. Also, the aerosol

effects need more attention in order to better simulate

extreme precipitation in eastern China.

Based on the above analysis, some conclusions can be

drawn as follows:

(1) Except for the western Tibetan Plateau and central

western China, where there is very little precipitation

or few observational stations, the number of dry

(wet) days for a grid-cell decreases (increases) and

the intensity of extreme precipitation decreases

following the increase in grid-cell size.

(2) The difference between observed gridded extreme

indices from EISTA and EIGRID, with the scaling

effect considered, is significant. In fact, the differ-

ence is often larger than the difference between

model simulation and observations based on EISTA.

Therefore, it is suggested that gridded extreme

precipitation indices based on EIGRID should be

used when evaluating model simulations.

(3) The climatology of extreme precipitation is generally

overestimated by most of the models, especially in

western China and the mountain regions. Extreme

precipitation is overestimated in northern China

and underestimated in southern China, while the
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simulated climatology of extreme precipitation in

eastern China is fair.

(4) The temporal trend of extreme precipitation during

1961�2000 in western China is generally well cap-

tured by most of the studied models, while in eastern

China, the trend in extreme precipitation is poorly

captured.

(5) The difference in CDD and R95pTOT trends be-

tween northern and southern China, where CDD

and R95pTOT both increased in southern China, but

in northern China CDD increased and R95pTOT

decreased, is poorly captured by most models. Due to

the reasons given above, it is suggested that monsoon

dynamics, model physics in reproducing monsoon

rainfall and the aerosol effect on precipitation should

be emphasised in the future development of global

climate models.
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