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Abstract

Understanding the current climate in the Yellow River Basin is essential for accurately predicting future climate change and assessing its
impacts on water resources and ecosystems; however, existing models exhibit notable biases in this region, primarily due to low resolution and
errors in driving data and model domains. Using in-situ station observation data, CN05.1 gridded meteorological observation dataset, along with
the ERAS and MERRA? reanalysis datasets, the performance of the WRF9km in simulating temperature and precipitation from 1980 to 2016
was comprehensively evaluated. Results indicate that the WRF9km model effectively captures the spatial pattern of air temperature, with a
spatial correlation exceeding 0.86 (at the 95% confidence level) and a cold bias of —2.8 °C compared to CNOS5.1. This bias is primarily due to the
underestimation of downward radiation and the overestimation of surface albedo. However, the WRF9km model fails to reproduce the observed
warming trend across the entire region, especially during the summer. For precipitation, the WRF9km model generally reproduces the observed
spatial pattern, with spatial correlation coefficients above 0.80 for all seasons except winter (at the 95% confidence level). However, the model
overestimates precipitation relative to CN05.1 and underestimates it when compared to MERRA2. The precipitation bias is mainly attributed to
the misrepresentation of wind fields and moisture by the WRF9km model. Regarding precipitation trends, different datasets yield divergent
results, indicating substantial inter-annual variability that is difficult for the WRF9km to capture. Compared to the driving ERAS data, the
WRF9km model reduces cold biases between November and December, as well as wet biases across all seasons. The model also better simulates
the winter warming trend in the western part of the UYRB and the summer wetting trend in the northern part. The evaluation of the WRF9km
model provides valuable insights for the development of dynamical downscaling in terrain complex regions, especially for improving the surface
albedo scheme and input driving data.

Keywords: WRF; Climate change; Upper Yellow River Basin; Air temperature; Precipitation

* Corresponding author. Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences,
Lanzhou University, Lanzhou, 730000, China.
E-mail address: wangxuejia@lzu.edu.cn (WANG X.-J.).
Peer review under responsibility of National Climate Centre (China Meteorological Administration).

https://doi.org/10.1016/j.accre.2024.12.003
1674-9278/© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: LI, Y.-J., et al., Evaluation of the performance of WRFOkm in simulating climate over the upper Yellow River Basin, Advances in
Climate Change Research, https://doi.org/10.1016/j.accre.2024.12.003



mailto:wangxuejia@lzu.edu.cn
www.sciencedirect.com/science/journal/16749278
https://doi.org/10.1016/j.accre.2024.12.003
http://www.keaipublishing.com/en/journals/accr/
https://doi.org/10.1016/j.accre.2024.12.003
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 LI Y.-J. et al. / Advances in Climate Change Research xxx (xxxx) xxx

1. Introduction

Climate warming has become a focal point of worldwide
attention and has had considerable effects on terrestrial,
freshwater, cryosphere and coastal ecosystems, leading to
increasingly irreversible losses (IPCC, 2022; Wang et al.,
2022; Wee et al., 2023). Regional studies provide crucial in-
sights into local climate changes and their impacts to effec-
tively understand these challenges (Zhu et al., 2016; Lin et al.,
2018; Giorgi, 2019).

A variety of regional climate models (RCMs) have been
widely employed to simulate and project climate change in
regions such as the Alps, America, Central and East Asia and
the Tibetan Plateau (Wang et al., 2016; Lun et al., 2021; Niu
et al., 2021; Liu et al., 2022). Research indicates that RCMs
effectively capture the spatial distribution of temperature and
precipitation in the Tibetan Plateau, improving the simulation
of precipitation intensity and location by accurately reflecting
terrain effects (Shi et al., 2011; Ji and Kang, 2013; Wang et al.,
2013; Fu et al., 2021).

The Weather Research and Forecasting (WRF) model is an
advanced mesoscale numerical weather prediction system
designed for atmospheric research and forecasting applica-
tions. A recent study comparing the Regional Climate Model
version 4 (RegCM4) and WREF at a 30 km horizontal resolu-
tion found that the WRF model outperforms RegCM4 in
simulating annual average temperature and precipitation
trends, demonstrating superior spatial pattern correlation (Gao,
2020). Another study, which assessed the performance of
RCMs with a horizontal resolution of 30 km in simulating
temperature extremes across China, indicated that WRF is
more effective at capturing inter-annual variations in extreme
indices (Kong et al., 2019). Overall, the WRF model achieves
notable advancements in simulating climate elements in the
complex regions of China, providing crucial technical support
for regional climate change assessments.

RCMs are generally highly sensitive to different model
configurations, such as domain size and horizontal resolution
(Giorgi, 2019). In regions with steep terrain, selecting the
appropriate horizontal resolution is crucial for regional climate
simulations, particularly for accurately simulating precipita-
tion and water vapour transport (Xu et al., 2018; Lin et al.,
2018). Recent studies have indicated that a spatial resolution
of 9 km, within the range of approximately 15—4 km (the so-
called grey zone, where the cumulus parameterisation scheme
can be tuned off), strikes a balance between detailed spatial
simulation and computational costs (Shin and Hong, 2013; Lin
et al., 2018). Ou et al. (2020) simulated the diurnal cycle of
precipitation on the Tibetan Plateau using the WRF model
with a 9 km resolution and found that experiments without the
cumulus parameterisation scheme outperformed those that
included it. Kilometre-scale modelling of the Tibetan Plateau
can accurately reproduce the diurnal and seasonal cycles, lapse
rates, spatial distribution of climate variables, precipitation
frequency and intensity, as well as water vapour transport
(Karki et al., 2019; Sugimoto et al., 2021). Additionally,
domain configuration is crucial for climate simulations. Ou

et al. (2023) conducted regional downscaling over a broader
domain extending to 50° N using the WRF model at a 9 km
resolution (referred to as WRF9km), driven by the ERAS
reanalysis, and found that the WRF9km dramatically reduces
the moisture bias in summer precipitation over the north-
western Tibetan Plateau. Thus, high-resolution modelling and
appropriate domain setting are vital to climate research,
especially in the complex terrain of the Tibetan Plateau.

The upper Yellow River Basin (UYRB), characterised by a
cold, semi-humid climate, is an irreplaceable water source for
the mid and lower reaches of the Yellow River (Zhang et al.,
2019), with its runoff accounting for nearly half of the total
runoff in the entire basin (Lan et al., 2016). Between 1961 and
2020, the UYRB has witnessed an overall warming and hu-
midification, with a temperature rise of 0.34 °C per decade and
a precipitation increase of 9.3 mm per decade (Zhang et al.,
2023). Projections from RCM simulations indicate consider-
able warming in high-altitude areas and an increased flood risk
across the Yellow River Basin under a high greenhouse gas
emission scenario (Wang et al., 2021a). Given the vulnerable
ecosystem of the region, intricate climate dynamics and
remarkable uncertainties in climate models, in-depth studies
on climate change and simulations in the UYRB are urgently
needed.

Existing models often exhibit deficiencies in simulating
regional climate, particularly in terms of cold and wet biases,
which can be attributed to errors in driving data, model
domain configuration, the choice of physical parameterisation
schemes and model resolution (Gu et al., 2020; Li et al., 2020;
Prein et al., 2023). Additionally, several studies evaluating
temperature performance do not consider the impact of station
locations and topography on temperature biases. How does the
WRF9km model perform in capturing the spatiotemporal
distribution of climate in the UYRB when increasing resolu-
tion and expanding the model domain? What are the main
causes of these biases? These questions should be addressed in
this study. The findings of this study are expected to enhance
our understanding of the evolution of the regional climate
system, offering an important basis for water resource man-
agement and ecological protection.

2. Methods and data

2.1. Regional climate simulation experiment and the
WRF9km dataset

This study used WRF simulations with a spatial resolution
of 9 km (WRF9km), developed by Ou et al. (2023) from the
Regional Climate Group at the University of Gothenburg,
Sweden, to evaluate climate over the UYRB. The WRF model
(version 3.7.1, developed by the National Center for Atmo-
spheric Research, Boulder, CO, USA) employed a non-
hydrostatic balance configuration (Skamarock et al., 2008) to
dynamically downscale global reanalysis data, with the model
domain centred over the Tibetan Plateau. The northern
boundary of the model domain (8°—50° N, 65°—125° E)
extended to 50°N, encompassing the core of the summer
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Fig. 1. Model domain (a) and topography and distribution of meteorological stations (b).

subtropical westerly jet in the upper troposphere (Fig. 1). The
WRF9km experiment used the New Goddard shortwave ra-
diation scheme, the RRTMG longwave radiation scheme
(Tacono et al., 2008), the WRF Double Moment 6-class
microphysics scheme, the unified Noah land surface model
(Mukul Tewari et al., 2004) and the Yonsei University plan-
etary boundary layer scheme (Hong et al., 2006). Two parallel,
continuous simulations were simultaneously conducted to
optimise computation time for long-term simulations,
covering the periods 1979—1998 and 1998—2019. By ana-
lysing the overlapping year (1998) simulations, the differences
in regional average precipitation, relative humidity, near-
surface air temperature, surface skin temperature and surface
net radiation between the two parallel simulations were rela-
tively small. Therefore, the 1-year overlap strategy introduced
minimal disturbance to the simulations, allowing the two
simulations (1979—1998 and 1998—2019) to be merged into a
continuous simulation covering the period from 1979 to 2019.
The initial and boundary conditions were provided by ERAS
data, updated every 3 h, ensuring the timeliness and accuracy
of the boundary conditions (Ou et al., 2023).

2.2. Validation data

The CNO5.1 high-resolution gridded daily temperature and
precipitation dataset was used as the reference data to assess
the performance of the WRF9km in simulating near-surface
air temperature and precipitation. CN05.1 is a meteorolog-
ical dataset released by the China National Meteorological
Information Center, generated by interpolating daily obser-
vations from 2416 national-level stations across mainland
China. The dataset covers the period from January 1961 to the
present, with a resolution of 0.25°, and covers the entire
mainland of China (Wu and Gao, 2013). This dataset has been
widely used for climate model validation and climate change
studies (Miao and Wang (2020); Wang et al., 2021b). Addi-
tionally, in-situ station observational data provided by the

National Climate Centre of the China Meteorological
Administration were used to validate model simulations at the
station level (Appendix Table 1).

Temperature and precipitation data from the ERAS rean-
alysis were used for comparison to assess the improvement of
the WRF9km simulations. ERAS has a spatial resolution of
0.25° x 0.25° and a time period spanning from 1950 onwards
(Munoz-Sabater et al., 2021). The data is updated daily and
undergoes monthly quality checks, during which preliminary
products are replaced (Hersbach et al., 2020).

The Modern-Era Retrospective Analysis for Research and
Applications, Version 2 (MERRA2), developed by the Na-
tional Aeronautics and Space Administration, was used to
identify the causes of temperature and precipitation biases in
the WRF9km model. MERRAZ2 replaced the original MERRA
reanalysis system by integrating the upgraded GEOS-5 data
assimilation system and updating the model and global sta-
tistical interpolation schemes with a spatial resolution of
0.5° x 0.625°. MERRA2 contains meteorological variables
such as radiation, albedo and water vapour transport, making
it an important tool for understanding global climate change
and evaluating climate model performance (Gelaro et al.,
2017).

2.3. Evaluation strategy

The model simulations were collectively assessed for
annual averages across four seasons: winter (December to
February, DJF), spring (March to May, MAM), summer (June
to August, JJA) and Autumn (September to November, SON).
Bias, root mean square error (RMSE), correlation coefficient
and linear trend between the WRF9km simulations and ob-
servations (CNO05.1), as well as reanalysis data (ERAS,
MERRA2), were compared to quantitatively evaluate model
performance. The WRF9km simulations and reanalysis data
(MERRA?2) were interpolated onto a common grid resolution
of 0.25° x 0.25° to match that of CNOS5.1, ensuring
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consistency. The common time period of 1980—2016 was also
selected in the four datasets to conduct related analyses.
Additionally, the WRF9km simulations and ERAS5 were
compared with 16 station observational data to mitigate po-
tential biases arising from the relatively low number of sta-
tions used in most existing gridded datasets.

3. Results
3.1. Air temperature

As shown in Appendix Fig. Al and Fig. 2, the spatial
distribution of air temperature from the WRF9km simulation
was compared with that from CNOS5.1, in-situ observations,
ERAS and MERRA2. Compared to CNOS5.1, the ERAS data
exhibited a noticeable warm bias in the central UYRB during
all seasons and a cold bias in the southeast of the UYRB
during DJF. The WRF9km model effectively captured the
observed spatial distribution, with a high spatial correlation
exceeding 0.97, particularly in JJA. Whilst the WRF9km

(a)WRF9km—CN05.1 (b)ERAS-CNO5.1

showed a warm bias in the northeast of the UYRB and a cold
bias in other areas, it still demonstrated improvement by
reducing the warm bias in the central region across all sea-
sons, as well as the cold bias in the southeast during DIJF,
compared to ERAS5. Notably, the spatial distribution of
temperature in the MERRA?2 data closely resembled CNO5.1,
with a spatial correlation greater than 0.98, making
MERRA?2 a suitable reference for analysing the sources of
model bias.

As shown in Fig. 3a, compared to CNO5.1, the regional
mean ERAS data displayed a large cold bias, except from June
to September, during which it showed a slight warm bias. The
WRF9%km simulation consistently showed a cold bias
throughout the year, relative to CN05.1 and the MERRA2
data, with the maximum bias occurring in April and May and
the minimum in August. When compared to ERAS, the
WRF9km data showed a reduction in the cold bias between
November and December, indicating an improvement in the
performance of the WRF9km model relative to its driving
data. Compared to the observations from the 16 stations, the

(c)WRF9km-ERAS (d)WRF9km-MERRA?2
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Fig. 2. Spatial distribution of temperature differences between WRF9km and CNO5.1, ERAS and CN05.1, WRF9km and ERAS5 and WRF9km and MERRA?2 from
1980 to 2016 (The symbols in (a) and (b) represent the temperature differences between WRF9km and ERAS and the station data).
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Fig. 3. Differences of air temperature (a) and precipitation (b) between WRF9km and reference data from 1980 to 2016 (WRF9km, and ERAS5, represent the results
of bilinear interpolation of WRF9km and ERAS5 data at station location, respectively. WRF9km,, and ERAS}, represent the WRFOkm, and ERAS, results after the

lapse rate correction, respectively).

interpolated WRF9km simulations at these stations consis-
tently exhibited a cold bias. This bias is primarily due to the
fact that most observation stations are located in easily
accessible valleys, whilst substantial elevation differences are
found between the model grid cells and the observation sta-
tions. These topographic differences have a considerable
impact on temperature in mountainous regions. A lapse rate of
0.65 °C/(100 m) was applied to correct the interpolated tem-
peratures to address this issue, dramatically reducing the cold
bias (Fig. 3a). Given the complex terrain of the UYRB, the
climate simulation at 9 km does not fully resolve temperature
at the station scale.

3.2. Precipitation

As shown in Fig. 3b, compared to CNOS5.1, the ERAS
considerably overestimated precipitation throughout the year.
The WRF9km simulation also overestimated precipitation
throughout the year, with the largest bias of 0.53 mm d~' in
June and the smallest bias of only 0.02 mm d~' in October. In
contrast, the WRF9km simulation underestimated precipita-
tion for the entire year compared to ERAS, indicating that the
WRF9km model largely mitigates the wet bias of ERAS.

As shown in Appendix Fig. Al and Fig. 4, whether
compared to CNOS5.1 or in-situ station data, the ERAS data
exhibited a remarkable wet bias. The WRF9km model satis-
factorily captured the observed spatial pattern, with spatial
correlations between the WRF simulations and the CNOS5.1/
MERRA?2 data generally exceeding 0.80 across all seasons
except in DJF. However, precipitation was consistently over-
estimated by the WRF9km across the study area when
compared to CNOS.1, particularly in the southeastern region.
In contrast, a noticeable underestimation of precipitation was
observed across the entire region when compared to
MERRAZ2. Overall, the WRF9km model showed the largest
bias in JJA, whether compared to CN05.1 or MERRA2. In
contrast, during DJF, when precipitation was at its lowest, the

model showed the smallest bias and RMSE despite lower
correlation coefficients (Appendix Table A2). However, when
compared to ERAS, the WRF9km data exhibited lower pre-
cipitation (Fig. 4c), indicating the WRF9km model effectively
alleviated the wet bias in the ERAS data.

3.3. Trend in air temperature

The observational results (CN0O5.1) revealed a notable up-
wards trend in regional average temperatures from 1980 to 2016
across all seasons (Fig. 5a). The most pronounced temperature
increase occurred in DJF, with a trend of approximately 0.52 °C
per decade, which was statistically significant at the 95% level.
The smallest increase was observed in SON, around 0.45 °C per
decade, also exceeding the 95% confidence threshold. In com-
parison, the WRF9km simulations consistently showed weaker
warming trends across all seasons relative to CNO05.1, especially
in JJA. The temperature time series revealed a positive corre-
lation between the WRF9km simulations and CNO5.1, partic-
ularly during SON and DJF, with correlation coefficients of 0.80
and 0.50, respectively. This finding indicates that the model
demonstrated superior performance in simulating inter-annual
temperature variations during the colder seasons (SON and
DIJF). The WRF9km model exhibited a cold bias throughout the
study period. Except for SON, the maximum cold bias occurred
around 1990. The annual average and seasonal temperature
biases showed a decreasing trend from 1980 to 2016, indicating
that the temperature bias did not substantially improve over
time. This trend may also explain the temperature bias observed
in the spatial distribution.

The spatial distribution of temperature trends in the
WRF9%km simulations provided a clear representation of the
model's performance in capturing spatial trend variations. As
shown in Fig. 6, CN05.1, ERAS and MERRA?2 all showed a
clear positive trend in annual and seasonal averages for the
UYRB from 1980 to 2016. Compared to CNO5.1, ERAS
showed an excessive warming trend in the central UYRB
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1980 to 2016 (The symbols in (a) and (b) represent the precipitation differences between WRF9km and ERAS and the station data).

Annual Cor=0.42* DIF Cor=0.50* Cor=0.27 JJA

Cor=031 SON Cor=0.80*
—~2 e 0
93 = 0 L, 127 2
go 9
g L
g o = o 2
272 &
g -6
5} —6 H ¥
4 . =10 i 62 3 -2
0.05% 0.02 003 21 0.05* 0.04 —0.02 0.05% 0.02 103 178 4[ 0.05%0.01 —0.04* 0.04% 0.03* 0.02%
1980 1990 2000 2010 2020 1980 1990 2000 2010 2020 ~ 1980 1990 2000 2010 2020 1980 1990 2000 2010 2020 1980 1990 2000 2010 2020
Cor=0.55% Cor=0.64* Cor=0.62* Cor=0.67* Cor=0.73*
= 1.6 0.9
ks 18 04 03 0.15 14 40
g =
£1.6 12 1236 06 5
a 02 0.10 ’ g
Sia 02 08 32 03 £
5] 1 1.0 i / 3
- e 0.05 0.4 2.8f---f--"- - % 00 -8
B 1.2 i 0.1 m
£ LoLootoo1 0.01 , eorool ~ 001 0 00400101 '01]%8 24} 0.01001 00| 03
0980 1990 2000 2010 2030" 1980 1990 2000 2010 2030 1980 1990 2020 1980 1990 2000 2010 2020~ 1980 1990 2000 2010 2020
Year Year Year Year
CNO5.1 WRFIKM . WRFIkm—CNOS5.1

Fig. 5. Time series of annual and seasonal mean air temperature and precipitation from CNO05.1 and WRF9km during 1980—2016, and the differences between
WRF9%km and CNO5.1 (Numbers in the lower corner of the panels indicate trends in observed and simulated temperature (°C per decade) and precipitation (mm/d per
decade). * denotes the correlation/trend exceeded the 0.05 significant level).

Please cite this article as: LI, Y.-J., et al., Evaluation of the performance of WRFOkm in simulating climate over the upper Yellow River Basin, Advances in
Climate Change Research, https://doi.org/10.1016/j.accre.2024.12.003




LI Y-J. et al. / Advances in Climate Change Research xxx (xxxx) xxx 7

(a)CNO5.1 (b)ERAS

>z

Annual

(c)MERRRA2 (d)WRF9km

]

DIJF

MAM

1A

SON

| |
-0.6 —04 -0.2

- —_—
02 04 06°C 0 100 200 km

Fig. 6. Spatial distribution of linear trends in annual and seasonal mean air temperatures in the upper Yellow River Basin based on CN05.1, ERAS5, MERRA?2 data
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across all seasons, whilst no warming trend was observed in
the southern UYRB during DJE. The WRF9km model also
captured the warming trend, but differences existed in the
spatial pattern and the magnitude of warming when compared
to CNO5.1 and MERRA2. CNO5.1 displayed the maximum
warming amplitude across all seasons, while the WRF9km
model showed the smallest. The area with the maximum
annual trend amplitude in CNO5.1 was in the eastern and
central UYRB, whereas in MERRA2 and WRF9km data, it
was mainly concentrated in the southwestern region, except
for the DJF period in the WRF9km simulation. However,
compared to ERAS, the WRF9km model was able to enhance
the weak warming trend in the southern UYRB during DJF

and reduce the overly strong warming trend in the central
UYRB during the other seasons.

3.4. Trend in precipitation

As shown in Fig. 5b, the regional average precipitation in
CNO05.1 did not exhibit a considerable trend across all seasons.
The WRF9km model performed well in simulating precipita-
tion variability for the annual average and all four seasons,
with correlation coefficients exceeding 0.55. Compared to
CNO5.1, the WRF9km model exhibited a remarkable wet bias,
with the most pronounced one occurring in MAM, followed by
JJA. Similar to temperature, no clear trend was observed in the
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WRF9km simulations from 1980 to 2016 (Black dots indicate that trends exceeded the 95% confidence level).

precipitation bias from 1980 to 2016, indicating that the pre-
cipitation bias did not reduce over time.

As shown in Fig. 7, the trends in precipitation for the
WRF9km simulation were generally consistent with those
from ERAS data and CNO5.1 for the annual average, DJF and
SON, despite some differences in the magnitude of the trends.
For annual precipitation, CN05.1 and the WRF9km data
showed no considerable trend in most regions. CNO5.1 only
presented an increasing trend in a small part of the northern
region and a slightly decreasing trend sporadically in the
southwestern UYRB. While the MERRA?2 data exhibited a
noticeable increasing trend in most of the northern region and
a small part of the southern region, the changing trends for the
four seasons varied across the different datasets, indicating a
spatiotemporal variability in precipitation that is difficult for
the WRF9km model to capture. In JJA, the ERAS data

exhibited a discernible drying trend in the northeast part of the
study area, while the WRF9km simulation indicated a moist-
ening trend that closely matched CNOS.1. This finding in-
dicates that the WRF9km model reduced the bias in
replicating the summer precipitation trend.

4. Discussion
4.1. Causes for air temperature bias

As shown in Fig. 8, the WRF9km simulation demonstrated a
general negative bias in net downwards shortwave radiation
(NSR) compared to the MERRA?2 data. The warm (cold) tem-
perature bias in JJA and SON largely corresponded to the pos-
itive (negative) net shortwave radiation in the WRF9km
simulation. The WRF9km simulation showed an overall
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Fig. 8. Differences in (a) net shortwave radiation (NSR), (b) net longwave radiation (DLR), (c) net radiation forcing (NSR + DLR), (d) sensible heat flux and (e)
latent heat flux between WRF9km and MERRA2 (WRF9%km — MERRA?2) over the upper Yellow River from 1980 to 2016.

negative downwards longwave radiation (DLR), but with pos-
itive values in the northeastern regions and overwhelming
positive values across the UYRB in JJA, compared to the
MERRAZ? data. This pattern coincided with the warm bias, or a
smaller bias, in temperature simulations in the northeastern
area. The overestimation of downward longwave radiation
(DLR) in JJA may be related to higher atmospheric moisture in
the simulation, as discussed below. Additionally, the positive
downwards longwave radiation (DLR) in the northeastern area
and negative downwards longwave radiation (DLR) in the
southwestern area counteracted some of the biases in net
downwards shortwave radiation (NSR), resulting in a spatially
uneven bias in downwards radiation forcing (NSR plus DLR)
across the UYRB (Fig. 8c). The underestimation of downwards
radiation forcing could help explain the cold bias in the
WRF9km simulation.

The surface albedo between the WRF9km simulation and
the MERRA2 data in the UYRB was compared to further
investigate the cause of the shortwave radiation bias (Fig. 9).
The analysis revealed that the albedo in the WRF9km simu-
lation was generally overestimated in most areas of the
UYRB, which contributed to the underestimation of NSR in
the western UYRB in JJA and across the entire UYRB in SON.
Another factor contributing to the NSR underestimation was

the overestimated downward shortwave radiation by the
WRF9km (figure not shown), which was associated with lower
precipitation compared to the MERRA?2 data.

Additionally, the model bias may be influenced by the dis-
tribution of meteorological stations, especially in high-altitude
areas. Meteorological stations are typically located in low-
altitude valleys with high temperatures (Wang et al., 2016).
Therefore, the high-altitude temperatures interpolated from
these stations often include high-temperature values, resulting
in a cold bias in the simulated values, especially in the source
areas. This bias can be partially mitigated through topographic
corrections.

4.2. Potential cause for precipitation bias

The comparisons of water vapour transport and moisture flux
divergence were conducted at 500 and 200 hPa between the
WRF9km simulation and the MERRA2 data to explain the
potential reason for the simulated precipitation bias (Fig. 10—
11). The direction and magnitude of water vapour flux and
divergence portrayed by the WRF9km and MERRA?2 data were
generally consistent across the UYRB and surrounding regions
for all four seasons, except during JJA. The MERRA2 and
WRF9km data both showed eastward moisture transport in the
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Fig. 9. Spatial distribution of annual and seasonal mean albedo from MERRA?2 (a) and WRF9km (b), as well as their differences (c, WRF9%km — MERRA?2) from

1980 to 2016.

region dominated by the westerlies, which generally carry low
moisture content, leading to reduced precipitation in MAM,
SON and DJF. In JJA, with the onset and progression of the
monsoon, moist air is transported from the Indian Ocean and the
Pacific Ocean into the UYRB, contributing to higher precipi-
tation. However, a considerable difference in moisture transport
was observed between the WRF9km and the MERRA?2 data in
the southern part of the region. Whilst the MERRA?2 data pri-
marily showed southwest winds, the WRF9km simulated
northwest winds. The northwest winds brought less moisture
than the southwest winds, which accounts for the reduced pre-
cipitation in the WRF9km simulation compared to the
MERRAZ2 data. Notably, in all seasons, the WRF9km simulated
lower specific humidity at 500 hPa than MERRA2, leading to
reduced precipitation in the simulation. The difference in

specific humidity at 500 hPa corresponded exactly to the pre-
cipitation bias between both datasets, showing larger dry biases
in JJA and SON and smaller biases in other seasons.

At 200 hPa, the MERRA2 and WRF9km data indicated
that moisture transport over the UYRB and surrounding re-
gions was primarily eastward (Fig. 11). Compared to the
water vapour transport at 500 hPa, the eastward moisture
transport at 200 hPa was more pronounced over the UYRB.
This process contributed less to overall precipitation due to
the limited moisture flux in the northwest inland region. The
dry bias in the WRF9km simulation, relative to the MERRA2
data, can be attributed to the stronger northwest water vapour
transport and lower humidity. The wet bias, in contrast to
CNO05.1, may also be linked to inaccuracies in the wind fields
and moisture representation within the WRF9km simulation.
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Fig. 10. Spatial distribution of water vapour transport at 500 hPa (vector, g/(kg) (m/s)) and moisture flux convergence (shade) from MERRA?2 and WRF9km and
the differences in winds (vector, m/s) and specific humidity (shade, g/kg) between WRFOkm and MERRRA?2 from 1980 to 2016.

However, despite these explanations, no atmospheric variables
were available to directly correlate with the observed pre-
cipitation variations.

Local convective activity also plays a crucial role in pre-
cipitation (Wang et al., 2016; Kukulies et al., 2020). Fig. 8d—e

compared surface turbulent fluxes between the WRF9km and
MERRA2 data. In most areas of the study region, the
WRF9km simulated latent heat flux was lower than that of
MERRAZ2, except in JJA, indicating that weaker water vapour
evaporation contributed to reduced precipitation in this region.
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Fig. 11. Spatial distribution of water vapour transport at 200 hPa (vector, (g/kg) (m/s)) and moisture flux convergence (shade) from MERRA?2 and WRF9km and
the differences in winds (vector, m/s) and specific humidity (shade, g/kg) between WRF9km and MERRRA?2 from 1980 to 2016.

The WRF9km also simulated a weaker sensible heat flux in
most areas of the UYRB, except in DJF and MAM, compared
to the MERRA?2 data. The reduced sensible heat flux led to a
lower turbulent heat exchange between the atmosphere and the

underlying surfaces, which may have resulted in less
convective precipitation in the WRF9km simulation. This
factor contributes to the dry bias observed in the WRF9km
simulation model.
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4.3. Limitations and uncertainties

This study shows that with improvements in model reso-
Iution and the expansion of the model domain, the WRF9km
model exhibits remarkable improvements in cold and wet
biases. However, considerable shortcomings remain in
capturing the spatial variation trends of temperature and pre-
cipitation. Simply increasing the model resolution and
expanding the model domain is still insufficient; further im-
provements are necessary in the driving data and physical
parameterisation schemes. The continuous improvement in
numerical model resolution implies the increasing need to
address a growing number of small-scale processes (e.g. local
convection and turbulence), which often exhibit inherent
nonlinearity and non-Gaussian characteristics (Carrassi et al.,
2018). Transitioning to higher-resolution models will likely
require corresponding developments in data assimilation
techniques (Carrassi et al., 2018). A promising avenue will
involve the integration of observational data with model sim-
ulations to reduce model wuncertainty through data
assimilations.

The evaluation of the WRF9km simulations in the UYRB
only focused on air temperature and precipitation. Additional
variables, such as soil temperature and moisture (Hasan et al.,
2023), as well as land—atmosphere interactions, will be
comprehensively validated to comprehensively explore the
applicability of the WRF9km simulations and the mechanisms
of climate change in the UYRB. Considerable biases in the
simulation of convective processes are observed in the
explanation of precipitation mechanisms. Further investigation
into the impact of high mountains on the westerlies and the
Asian summer monsoon, as well as their interactions, is
needed through high-resolution climate simulations and high-
precision observational datasets to enhance the understanding
of the driving mechanisms of precipitation in the UYRB (Ou
et al., 2023). Specifically, analysing the causes of the wet
bias is necessary due to data limitations on water vapour
transport in the CNO5.1. Therefore, this study indirectly uses
MERRA? as a reference to analyse the physical processes for
model biases. However, some uncertainties remain in
MERRAZ2, as it is generated by assimilating observational data
with numerical models. The quality of MERRA2 data is
inevitably influenced by factors such as model resolution, data
sources, data assimilation methods and boundary conditions.

4.4. Future outlook

Considering atmospheric circulation and local convection,
enhancing the simulation of water vapour transport processes
is necessary to further improve the simulation accuracy of the
WRF9km model, especially precipitation. Additionally, in
simulating inter-annual variations, particularly in MAM and
JJA, the WRF9km model exhibits remarkable bias in the
magnitude of precipitation trend. Future studies should focus
on optimising physical parameterisation schemes and
improving driving data to effectively simulate inter-annual
precipitation variability. Moreover, incorporating high-

resolution observational data (particularly variables related
to water vapour transport), along with data assimilation tech-
niques, will help reduce model uncertainties. When applying
RCMs in other regions, implementing tailored adjustments
that accurately reflect the unique climate characteristics and
diverse topography of those areas.

5. Conclusions

The WRFOkm climate simulations in the UYRB were
assessed from 1980 to 2016. The WRF9km model performed
reasonably well in the spatial temperature pattern, with a
spatial correlation coefficient exceeding 0.86, despite a cold
bias of over —2.8 °C. The cold bias may be associated with the
downward radiation bias and an overestimated albedo. Cor-
recting the topographic effect using the temperature lapse rate
could help alleviate the cold bias in the UYRB in the
WRF9km model.

The WRF9km roughly reproduced the spatial pattern of
precipitation despite exhibiting biases different from those of
the reference data. Compared to CNOS5.1, the WRF9km
simulation showed a wet bias across most areas of the UYRB
during all seasons except DJF. Comparisons with MERRA?2
data indicated that the model's representation of humidity and
moisture transport plays a crucial role in the precipitation bias.

The warming trend simulated by the WRF9km model was
relatively weak compared to CNOS5.1. The inter-annual varia-
tions in regionally averaged precipitation simulated by the
WRF9km generally aligned with the observational data,
except for MAM and JJA; however, discrepancies in magni-
tude were noted. Therefore, whilst the WRF9km model is
somewhat effective in capturing inter-annual trends, consid-
ering different seasons and trend intensities, its accuracy can
still be improved, particularly when simulating the magnitudes
of temperature and precipitation changes.

Compared to CNOS5.1, the WRF9km model effectively al-
leviates the cold bias in ERAS during November and
December. In terms of precipitation, the WRF9km data
notably reduces the wet biases observed in ERAS data across
all seasons. Additionally, the WRF9km data corrects the
excessive warming trend in the central UYRB, which is
evident in ERAS data throughout all seasons. Furthermore, the
WRF9km data depicts a moistening trend in the northeast part
of the UYRB during JJA, a trend that ERAS fails to capture.
This trend indicates that the WRF9km model has an enhanced
capability to reproduce JJA precipitation trends.
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