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Abstract

Laboratory experiments have revealed the meteorological sensitivity of the

coronavirus disease 2019 (COVID-19) virus. However, no consensus has been

reached about how outdoor meteorological conditions modulate the virus

transmission as it is also constrained by non-meteorological conditions. Here,

we identify the outbreak's evolution stage, constrained least by non-

meteorological conditions, by searching the maximum correlation coefficient

between the ultraviolet flux and the growth rate of cumulative confirmed cases

at the country level. At this least-constrained stage, the cumulative cases count

around 1300–3200, and the count's daily growth rate correlates with the ultra-

violet flux and temperature significantly (correlation coefficients r = �0.54

± 0.09 and �0.39 ± 0.10 at p<0:01, respectively), but not with precipitation,

humidity, and wind. The ultraviolet correlation exhibits a delay of about

7 days, providing a meteorological measure of the incubation period. Our work

reveals a seasonality of COVID-19 and a high risk of a pandemic resurgence in

winter, implying a need for seasonal adaption in public policies.
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1 | INTRODUCTION

A way to predict the coronavirus disease 2019 (COVID-19)
transmissions in winter is to quantify the responses of the
virus survival and transmission to the winter weather
conditions. Laboratory experiments revealed that ultravio-
let (UV) radiation and air temperature modulate the air-
borne survival of the virus strongly (Ratnesar-Shumate
et al., 2020; Schuit et al., 2020; Ujiie et al., 2020). Mean-
while, several studies have attempted to extract relevant

epidemiological evidence (Iqbal et al., 2020; Qi et al., 2020;
Sajadi et al., 2020; Ujiie et al., 2020; Yao et al., 2020) by
studying the correlations between the count of confirmed
cases or mortality and meteorological conditions using
data from priorly selected cities. Their conclusions, how-
ever, are often contradictory. Some attempts did not find
the correlation (Ujiie et al., 2020; Yao et al., 2020),
whereas the others reported weak or moderate correla-
tions (Iqbal et al., 2020; Qi et al., 2020; Sajadi et al., 2020).
The results are not conclusive, mainly because the trans-
mission is constrained by non-meteorological factors that
can hardly be considered in an appropriate way.Maosheng He and Keyan Fang contributed equally to this study.
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At the early stage of an uncontrolled outbreak, the
infection cases grow exponentially, whereas its growth rate
is relatively stable (Hunt, 2014; Maier & Brockmann, 2020;
Picoli Junior et al., 2011). Accordingly, here we investigate
the initial growth rate of the infection cases, expecting the
growth rate is more susceptible to meteorological condi-
tions than the infection cases. However, at the early stage
of an outbreak, the infection cases might not be confirmed
timely and accurately as constrained potentially by insuffi-
cient test capability. On the other hand, at the late stage of
an outbreak, the growth rate of the infection will become
relatively less susceptible to meteorological conditions as
being mitigated after effective artificial (Anderson
et al., 1992; Liu et al., 2020). Therefore, we aim to deter-
mine the outbreak's stage, which is late enough when the
test capability is sufficient and is also early enough so that
the growth rate has not been mitigated by artificial con-
trollers. We term this stage as the least-constrained stage,
and determine it through an optimization. The optimiza-
tion is performed by maximizing the correlation coefficient
between the confirmed cases' growth rate and meteoro-
logical conditions over the accumulative confirmed case
count. The growth rate at the least-constrained stage is
defined as the least-constrained growth rate, and its
response to meteorological conditions is investigated
statistically. As discussed below, the least-constrained
growth rate reflects minimum contamination from non-
meteorological factors, for example, test capability and
artificial controls, and reveals meteorological modulations
in detail.

2 | DATA ANALYSES AND
RESULTS

This study uses daily cumulative confirmed COVID-19
cases at a country level and daily meteorological variables
until 1 September 2020. The confirmed cases are from
COVID-19 Data Repository by the Center for Systems Sci-
ence and Engineering at Johns Hopkins University,
whereas the meteorological variables are extracted from
the ERA5 reanalysis dataset from the European Centre
for Medium-Range Weather Forecasts (C3S, 2017). The
meteorological variables analysed herein include the air
temperature at the height of 2 m above the surface (land,
sea, or inland waters), precipitation, relative humidity,
wind speed at the height of 10 m, downward UV radia-
tion flux at the surface (UV, in the range of 250–440 nm),
and diurnal temperature range. The daily mean meteoro-
logical data were averaged for each country to compare
with the country-level COVID-19 data. Below, we com-
pare the growth of confirmed cases with its theoretical
expectation, in an example country in Section 2.1 and

statistically in Section 2.2, determine the statistical stage
modulated most sensitively by weather in Section 2.3,
investigate the geographic distribution of the confirmed
case growth and its correlation with meteorological fac-
tors in Sections 2.4 and 2.5, and diagnose the incubation
period in Section 2.6.

2.1 | Evolution of the outbreak in an
example country: Stages of the confirmed
case growth

Figure 1a displays the cumulative confirmed case num-
ber y as a function of time t in Bulgaria as an example.
Through a least-square (LS) regression, we fit y to an
exponential model y¼ aeb t�τð Þ in a 28-day-wide sliding
window. Here, τ = 86, 88, …, 232 days denotes the centre
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FIGURE 1 (a) Cumulative confirmed cases y as a function of

time t and (b) its growth rate b against the regression time

parameter τ, for Bulgaria as an example. The growth rate b (black

line in (b)) is LS-fitted according to the model y¼ aeb t�τð Þ in a 28-

day-wide sliding window centring at τ = 86, 88, …, 152, where a
represents the model initial confirmed cases (namely, the LS-fitted

y value at τ). The growth of confirmed cases could be divided into

three stages: Stages I, II, and III, sketched by blue symbols in (b). In

Stage II, the growth is stable (0:035< b<0:045), whereas in the

other two, b decreases by more than 0.02. In Stages II and III but

not in Stage I, the real growth is largely consistent with the ideal

evolution that is sketched as the green line in (b) according to Liu

et al., 2020; Anderson et al., 1992. We attribute the discrepancy in

Stage I to an insufficient test capability at the early stage. The red

symbols denote the least-constrained growth rate and its sampling

window (see Sections 2.1–2.3 for details).
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of the sliding window, a measures the confirmed cases at
the window centre τ, and the exponent factor b measures
the growth rate. The LS-fitted growth rate b is shown in
Figure 1b as a function of time. Besides b, the regression
also results in a and r2. a is the a LS estimation of y and
r2 measures the regression goodness equalling to the
square of the correlation coefficient between y tð Þ and its
LS estimation. The LS-fitted growth rate b can be divided
into three stages, labelled as I, II, and III and indicated
by the blue arrows in Figure 1. Stages I and III are char-
acterized by decreasing growth rates, whereas Stage II is
associated with a relatively stable growth rate.

Theoretically, outbreaks of infectious diseases
(Hunt, 2014; Maier & Brockmann, 2020; Picoli Junior
et al., 2011) are characterized by two phases: the uncon-
trolled first phase showing stable exponential growth fol-
lowed by a second phase with a decreasing growth rate
usually after effective artificial controllers (Anderson
et al., 1992; Liu et al., 2020). The two-phase theoretical
growth is sketched as the green dashed line in Figure 1b,
which is largely parallel to the growth of the confirmed
case (black line) in Stages II and III, and can explain
largely these stages. Stage II reflects the uncontrolled
transmission of COVID-19, whereas Stage III reflects the
decline phase where the decreasing growth rate could be
explained as responses to artificial interventions or con-
trollers, for example, travel restrictions and changes in
human behaviours (Lai et al., 2020; Tian et al., 2020).
However, in Stage I in Figure 1b, the black line is not
parallel to the green. At the beginning of the outbreak,
infections cannot be confirmed timely and can accumu-
late until sufficient tests. The decreasing growth rate of
the confirmed case, biased from theoretical growth,
might reflect more the delayed sufficient test capability
than the infection growth.

Compared with Stages I and III, Stage II is character-
ized by a relatively stable growth rate reflecting uncon-
trolled transmissions confirmed timely and sufficiently.
Therefore, we assume that in Stage II the growth is mod-
ulated most sensitively by the weather and will use Stage
II for exploring the impacts of weather. In practice, the
evolution of b exhibits dramatic morphological diversity
between different countries. Instead of delimiting Stage II
county by county, we investigate the evolution statisti-
cally in the following subsection.

2.2 | Statistical evolution of the outbreak

We implement the regression defined in the previous
subsection on the cumulative confirmed cases from every
country, yielding the LS-fitted confirmed case count a,
the LS-fitted growth rate b, and the LS regression

goodness r2 as functions of τ. Figure 2a,b displays b
against a and r2 from the 50% most developed countries,
respectively. These countries are characterized by the
gross domestic product per capita 2019 above the median
of all countries, 6200 United States dollars, and therefore
are presumably least subject more to the socio-economic
factors (Guha et al., 2020; Khalatbari-Soltani et al., 2020)
as discussed further in Section 2.6 and detailed in
Table S1. Figure 2b, b exhibits a dependence on r2 at r2 <
0.9. Accordingly, we exclude b values associated with
r2 < 0.9 from the following analyses. Here, r2 quantifies
how much of the total variance of the accumulative con-
firmed case y can be explained by our exponential model
y¼ aeb t�τð Þ. The high r2 values reveal that the outbreak
evolves exponentially.

Most studies on the evolution of accumulative con-
firmed case count typically used the date as the indepen-
dent variable as we used in Figure 1. However, from a
mathematical perspective, these two variables, the count
and date, increase monotonically with each other. There-
fore, alternatively, the count can also be denoted as the
independent variable. In principle, both the count and
date could be used to coordinate the growth rate in
Figure 2a for comparing the evolution stages of the out-
breaks in different countries. However, using the date
entails shifting outbreaks in different countries to compa-
rable phases and therefore entails determining the start
of outbreak (namely, the concurrence of the first infec-
tion) or the start of comparable phases in all countries.
Determining the concurrence of the first infection is sub-
ject to the uncertainty associated with, for example, the
initial test capability, and determining comparable
phases is potentially subject to prior knowledge or subjec-
tively defined parameters. Both determinations might
introduce errors and both require the confirmed case
count anyway. To avoid these errors, we use the LS-fitted
accumulative confirmed case count, a, rather than the
date, t, as to coordinate the outbreak's evolution
statistically.

In Figure 2a, the growth curve b að Þ does not clearly
exhibit the three-stage shape of b τð Þ in Figure 1b but
looks more complicated. The curve minimizes at a¼ 102,
(1–2)� 103, 104 and 105, namely, integer powers of 10.
Therefore, we conjecture they are unphysical but artifi-
cial signals, for example, data manipulation (Kapoor
et al., 2020). Neglecting these minima, we divide largely
the growth curve b að Þ into four stages. The final stage is
characterized by a decreasing rate b að Þ, corresponding to
Stage III of the b τð Þ growth in Figure 1b, and is labelled
here also as Stage III. The other stages of b að Þ are labelled
as I-, I, and II, respectively. Stage I- is associated with a
small number of infections at the very beginning, and the
growth might be susceptible to uncertainties and
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therefore is excluded from the following analyses. Stage I
is characterized largely by a decreasing growth rate b að Þ,
corresponding to Stage I of b τð Þ in Figure 1b. We assume
that b að Þ in-between Stages I and III correspond to Stage
II in Figure 1b where the growth is relatively stable and
reflects timely and sufficiently confirmed uncontrolled
transmissions. Note that in Figure 1a, the range of Stage
II is just a sketch, which is not determinative. We deter-
mine the statistical range of Stage II by searching the
maximum correlation coefficient between meteorological
factors and the growth rate in the following subsection,
assuming that in Stage II the growth is modulated most
sensitively by weather.

2.3 | The statistical stage modulated
most sensitively by weather

The statistical Stage II can be denoted as ac �S�1

< a< ac �S where S represents the half-width of the stage
and ac represents the stage centre. To start, we tempo-
rally assign S¼ 100:2 and ac ¼ 102 and define the first can-
didate of Stage II: 101:8 < a<102:2. In this candidate
range, we search the maximum b að Þ of each country, and
calculate the correlation coefficient rUV between the max-
imum b að Þ and the UV flux (as detailed in the following

subsections) across all countries. Similarly, we calculate
rUV for other candidates of Stage II, including
101:9 < a<102:3, 102:0 < a<102:4, …, and 103:8 < a<104:2

(namely, the a range centres at ac ¼ 102:1, 102.2, …, and
104.0 with a half-width 100.2). The absolute value j rUV j as
a function of ac is displayed as the solid blue line in
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FIGURE 2 The growth rate b of the confirmed cases against (a) the LS-fitted initial confirmed cases a and (b) the goodness r2 of the

exponential regression as instanced in Figure 1. In each panel, one dot corresponds to one sliding step of the regression; and the bold black

solid line and grey shadow illustrate the median and the interquartile range, respectively. In (a), the green line sketches the ideal evolution

according to Anderson et al. (1992); the blue symbols sketch different Stages of the evolution of the outbreak among which Stages I, II, and

III are the statistical estimations of Stages I, II, and III instanced in Figure 1. Stage II is centring at the red dashed line ac ¼ 2000, determined

in Section 2.3. In (a), the red crosses denote the least-constrained growth rate bm, namely, the maximum b in Stage II for each country. In

(b), the red line displays the threshold value θr2 ¼ 0.9 in (b) used in selecting bm. See Section 2.2 for the details.
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the details.
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Figure 3, which maximizes between ac ¼ 2000�4000.
The maximum implies that at this stage, ac �10�0:2

< a< ac �100:2, the growth is modulated statistically
strongest by the meteorological conditions.

Note that the different selection of ac will affect the
number of effective sampling countries due to data avail-
ability (see the green line in Figure 3). Therefore, we
compromise at ac ¼ 2000 so that the correlation coeffi-
cient is around the maximum and the amount of sam-
plings is also considerable. Accordingly, we defined
2000�10�0:2 < a<2000�100:2 (approximately
1300< a<3200) as the statistical Stage II. In this statisti-
cal Stage II, the maximum growth rate b að Þ in each coun-
try is identified, referred to as the least-constrained
growth rate bm. The red crosses in Figure 2a display bm of
all countries, associated with a median a¼ 1424.

2.4 | The daily growth rate in percentage
and its geographical distribution

According to our regression model, the least-constrained
growth rate bm is an exponent and ebm measures the ratio
of the LS-fitted number of confirmed cases of 1 day over
that of the previous day. Therefore, g¼ ebm �1

� ��100 is
defined as the daily growth rate by percentage. When
bm ≈ 0, bm is already a first-order approximation of g due
to g¼ bmþO b2m

� �
≈ bm, since eb can be expanded into

Taylor polynomial eb ¼ P∞
n¼0

b
n!¼ 1þbþO b2

� �
. Here, O b2

� �

denotes a variable with absolute value at some constant

times j b2 j when b is close enough to 0. The following
analyses are based on g. The geographical distribution of
g is shown in Figure 4.

2.5 | Correlations of the daily growth
rate with the meteorological factors

Figure 5 presents the correlation analyses between the least-
constrained growth rate g and six meteorological factors,
that is, (a) the UV flux in the range of 250–440 nm,
(b) the air temperature at 2 m above the surface, (c) the
diurnal temperature range, (d) the relative humidity,
(e) the wind speed at the height of 10 m, and (f) the pre-
cipitation. As an example, Figure S1 displays the UV flux
and temperature in Bulgaria. The meteorological factors
are extracted from the ERA5 reanalysis at C3S Climate Data
Store and sampled and averaged in a 28-day-wide window
centring at 7days before the sampling window centre for fit-
ting the growth rate. The 7-day displacement is used to deal
with the COVID-19 incubation period (Lauer et al., 2020).
We determine the length of the incubation period in the fol-
lowing subsection. In each panel in Figure 5, one cross
denotes one country, corresponding to one red cross

5 10 15

FIGURE 4 Global distribution of the daily growth rate g of COVID-19 confirmed cases. Each point represents one country/region. Both

the colour and the size of the symbols represent the growth rate. The growth rate is estimated through a sliding window regression detailed

in Section 2.1 and an optimization in Section 2.3. Here, only 50% of most developed countries are included (according to the gross domestic

product per capita 2019).
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displayed in Figure 2a. The correlation coefficients and their
standard deviation are estimated through a bootstrapping
analysis using the Monte Carlo algorithm for case resampling
and displayed on the top of each panel. The growth rate
exhibits a significant correlation with the UV flux and the air
temperature (r¼�0:54�0:09 and �0:39�0:10 at
p< <0:01, in Figure 5a,b, respectively), but not with the
other meteorological conditions, namely, wind speed, rel-
ative humidity, diurnal temperature range, and precipita-
tion (p> ¼ 0:05, Figure 5c–f).

Further, the data points in each panel of Figure 5 are
used for a robust regression to a linear model bg¼ β1

�xþβ0
through the least absolute deviations method. Here, x
denotes each of the above six variables, and β1 and β0
denote the parameters to be determined. The regression
results are displayed as red lines in each panel, and the
fitted coefficients β1 and β0 and their 95% confidence
bounds are labelled in red at the bottom of each panel.
The regression for the UV reads bg

1%¼ �0:36ð
�0:15Þ� UV

1W=m2þ18�3:4, which reveals that an increase
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)
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FIGURE 5 Correlation between the daily growth rate g (as defined in Section 2.4) and six meteorological variables: (a) the ultraviolet

(UV) flux in the range of 250–440 nm, (b) the air temperature at 2 m above the surface, (c) the diurnal temperature range, (d) the relative

humidity, (e) the wind speed at the height of 10 m, and (f) the precipitation. In each panel, one cross represents one country, corresponding

to one red cross displayed in Figure 2a; the solid red line presents a robust regression to a linear model bg¼ β1
�xþβ0 through the least

absolute deviations method, and the dashed and dotted lines display the significance level α¼ 0:05 and 0.01, respectively. Here, x denotes

one of the above six variables, and β1 and β0 denote the parameters to be determined. The regression results are displayed in red on the

bottom of each panel, while the Pearson correlation coefficient r is printed on the upright corner, in the format of r�Δr rl, ru½ �. Here, r and

Δr are the mean coefficient and its standard deviation estimated through a bootstrapping method, and rl and ru are the lower and upper

bounds for a 95% confidence interval. Also displayed on the top is the p-value for testing the hypothesis of no correlation.
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in UV flux by 1 W/m2 is associated with a decrease in the
growth rate by 0.36± 0.15% per day. The regression for
the temperature, bg1%¼ �0:19�0:12ð Þ� T

1�Cþ12�2, reveals
that an increase of the temperature by 1�C is associated
with a decrease in the growth rate by 0.19± 0.12%
per day.

2.6 | A cross-correlation analysis
suggests an incubation period

The previous subsection uses a time displacement δt¼ 7
day between the sampling window of the growth rate
and that of the meteorological factors to deal with the
incubation period. This incubation period is determined
through a cross-correlation analysis. We calculate the
absolute correlation coefficient of the growth rate with
the UV flux j rUV j, as a function of the displacement δt,
as displayed in Figure 6.

In Figure 6, j rUV j maximizes at a displacement of
7 days, indicating a 7-day delayed response of the growth
to UV flux. A clinical study (Qin et al., 2020) suggested a
mean of an incubation period of 6.4 days, while a cross-
sectional and a forward follow-up analysis (Lauer
et al., 2020) reported a median incubation of 7.76 days.
These measures of the incubation period are comparable
to the 7-day delay diagnosed herein. Our results provide
evidence of the incubation period by analysing confirmed
cases instead of controlled experiments from clinical
studies.

All results presented above are based on 50% of the
most developed countries. For comparison, we conducted
the same investigations with data from all countries and
found that the incubation period signature weakened
(see Figure S2). The weakening could be attributed to the
different population density, age distribution and physi-
cal characteristics of the population, different socio-
economic conditions, and potentially less timely tests in
less developed countries (Guha et al., 2020; Khalatbari-
Soltani et al., 2020). The delayed tests could reshape the
cross-correlation analysis and bias the quantification of
the meteorological modulation.

2.7 | On the subjectively defined
parameters

In the above analyses, we tried to avoid defining parame-
ters subjectively through, for example, a cross-correlation
analysis in determining the incubation, an optimization
in determining the centre of Stage II, and replacing the
date with confirmed case count in coordinating the Stage
II. Even though a couple of parameters are still defined
subjectively, including the window width (Δt¼ 28 day)
used for sliding exponential regression in Section 2.1, the
percentage of the 50% of most developed countries in
Section 2.2, the half-width of Stage II (S¼ 100:2) in Sec-
tion 2.3. These selections are overall compromises among
resolution, sampling amount, and significance and
robustness of the correlation and regression analyses,
similar to the compromise in selecting the Stage centre
ac ¼ 2000 in Section 2.6.

Although optimizing each of the above parameters is
beyond the scope of the current article, we tested differ-
ent values of the parameters and produced the same fig-
ures as Figures 1–6 but for Δt¼ 16, 20, 24, and 32 days,
S¼ 100:1 and 100.3, and ac ¼ 1500, 2500, and 3000, respec-
tively. Although these tests (not shown) resulted in differ-
ent absolute values of the correlation coefficients, the
differences are far less than their uncertainties. Our main
conclusions on the correlations and 7-day incubation sig-
nature are not subject to our choices of Δt¼ 28 day,
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FIGURE 6 The absolute correlation coefficients j r j between
the growth rate g and two meteorological factors, the UV flux and

temperature T, as functions of the time displacement δt, and their

slopes calculated using the centred differencing method. The blue

lines denote the correlation coefficients referring to the y-axis on

the left whereas the vertical red bars denote their slope referring to

the y-axis on the right. The solid lines and bars with crosses denote

those associated with the UV flux, whereas the dashed lines and

bars with dots denote the results associated with the temperature.

The shadow illustrates one standard deviation of the slopes below

and above their average. See Section 2.6 for the details.
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S¼ 100:2, and ac ¼ 2000. We did not test narrower sliding
window Δt< 16 days because narrower windows might
be affected by the artificial weekly periodicity of the con-
firmed cases associated with the fact that the COVID test
capability is more sufficient during working days than
during the weekend.

3 | DISCUSSIONS AND
CONCLUSIONS

Above we illustrated that the least-constrained growth
rate exhibits significant correlations with the meteorolog-
ical conditions (UV flux and temperature). This finding is
in good agreement with previous literature, which
highlighted the strong effect of solar irradiance and tem-
perature on the spread of the viruses (Abraham
et al., 2021; Isaia et al., 2021) The UV correlation exhibits
a delay of about 7 days, which is explained as a signature
of the incubation period. Socio-economic factors might
modulate the COVID-19 transmission (Guha et al., 2020;
Khalatbari-Soltani et al., 2020), which might explain, for
example, the distinct difference between east and west
Europe in Figure 4, but cannot explain the delay. The
temporal variations of socio-economic factors are gener-
ally at scales longer than the 7-day delay, which, there-
fore, can neither modulate the COVID-19 nor respond to
the UV flux at 7 days. On the other way around, the pres-
ence of the incubation period signature indicates the
robustness of the UV modulation on transmission.

There are at least three factors through which meteo-
rological conditions can modulate the transmission. The
first is human behaviours. When the temperature is low,
humans typically spend more time indoors, with reduced
social distancing and less ventilation than outdoors. As
an example, schools are places of enhanced influenza
transmission (Cauchemez et al., 2008) for intense indoor
activities. The second factor is the immune system of sus-
ceptible hosts. Solar radiation drives changes in the
human immune system by modulating melatonin
(Dowell, 2001) and/or vitamin D (Abhimanyu, 2017;
Martineau et al., 2017; Whittemore, 2020). Therefore,
most respiratory viruses normally exhibit a peak infection
during the cold season in densely populated regions
(Nittari et al., 2021).

The last but might be the most important factor is the
virus's survival, namely the UV's virucidal effect. Evi-
dence has revealed that aerosols are a medium of trans-
mission of COVID-19, as the virus remains active on the
surfaces for several hours to days (Liu et al., 2020).
Intense solar radiation may inactivate the virus on the
surface through physical properties (i.e., shape and size)
and the virus's genetic material (Ratnesar-Shumate

et al., 2020; Sagripanti & Lytle, 2007; Sutton et al., 2013).
Simulation results revealed that 90% of the virus could be
inactive in summer daytime for 6 minutes, whereas the
virus becomes inactive for 125 min under night condi-
tions (Schuit et al., 2020). In addition, high temperature
shortens the virus survival time (Abduljalil &
Abduljalil, 2020; Gunthe et al., 2020; Ujiie et al., 2020).
On the opposite, low temperature favours prolonging sur-
vival on infected surfaces and aerosols, which promotes
the diffusion of the infection. The modulation of relative
humidity, on the other hand, is negligible, as supported
by laboratory experiments (Schuit et al., 2020), which is
different from the sensitive modulation on influenza
virus survival (Shaman & Kohn, 2009) and transmission
(Kudo et al., 2019).

The 7-day-delayed response to the UV flux (Figure 6)
reflects the incubation period, whereas the temperature
response does not exhibit a delay. A potential explanation
is that temperature variation is characterized by a tempo-
ral scale longer than the 7-day incubation period, and
therefore cannot resolve the incubation period. Another
potential explanation is that the temperature might not
be an independent drive of the transmission but a
response to solar radiation. The temperature correlates
significantly with the UV flux (r = 0.86 ± 0.03 at
p¼ 1:3�10�17). We carried out a canonical correlation
analysis (Seber, 2009) between the growth rate and the
UV flux and temperature, resulting in a canonical corre-
lation coefficient cUV,T ¼�0:58�0:08. The canonical cor-
relation coefficient is close to the UV correlation
coefficient rUV ¼�0:55�0:09 (Figure 5a), which means
that using both the UV and temperature as predictors
cannot explain more variance than using the UV alone.

The UV impact can drive a seasonality of COVID-19
transmission and explain the following geographic
dependence of COVID-19. (1) The mortality exhibits a
latitudinal dependence (Whittemore, 2020), with a low
UV flux associated with a high growth rate of confirmed
cases. (2) The late outbreak in Africa and arid central
Asia are attributable to intense UV flux due to the low
cloud fraction prior. (3) The onset of the Asian summer
monsoon increases clouds in early May (Wang &
Ho, 2002) and yields low UV flux, which may account for
the late outbreak in India and many southeastern Asia
countries until early May. (4) The decrease in UV and
temperature during the coming austral winter can con-
tribute to the sharp increase in South America, for exam-
ple, both the confirmed and dead cases in Brazil ranked
second in the world since 13 June, and the transmission
enhanced at high latitudes, such as North America and
Europe in November 2020.

The current study provides evidence to support the
hypothesis that the UV radiation and air temperature
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drive the COVID-19 transmission (Whittemore, 2020).
Our results also imply a seasonality of COVID-19 and
provide a meteorological measure of the incubation
period. The virus transmits more readily during winter
and during the global monsoon season, which impacts
about 70% of the global population (Wang et al., 2017).
Accordingly, we predict a high possibility of a resurgence
in the boreal winter and suggest adapting the public pol-
icy according to the seasonal variability.

AUTHOR CONTRIBUTIONS
Maosheng He: Formal analysis (lead); investigation
(lead); methodology (lead); writing – original draft (lead);
writing – review and editing (lead). Keyan Fang: Con-
ceptualization (lead); data curation (lead); formal analy-
sis (lead); funding acquisition (lead); investigation (lead);
methodology (lead); project administration (lead); super-
vision (lead); writing – original draft (lead); writing –
review and editing (lead). Feifei Zhou: Data curation
(equal); software (equal); validation (equal); writing –
original draft (supporting); writing – review and editing
(supporting). Tinghai Ou: Conceptualization (support-
ing); data curation (equal); software (equal); validation
(equal); writing – original draft (supporting); writing –
review and editing (supporting). Deliang Chen: Data
curation (lead); formal analysis (lead); funding acquisi-
tion (lead); methodology (equal); project administration
(equal); supervision (lead); writing – original draft
(equal); writing – review and editing (lead).

ACKNOWLEDGEMENTS
This study was funded by the National Science Foundation
of China (41971022, 41772180 and 41822101), Strategic
Priority Research Program of the Chinese Academy of Sci-
ences (XDB26020000). Support from the Swedish Formas
(2017-01408) project is also acknowledged. We used the
COVID-19 data of cumulative confirmed cases until
1 September of 2020 at a country level from COVID-19
Data Repository by the Center for Systems Science and
Engineering (CSSE, https://github.com/CSSEGISandData/
COVID-19) at Johns Hopkins University. The daily meteo-
rological variables are extracted from the ERA5 reanalysis
at C3S Climate Data Store, see https://doi.org/10.24381/
cds.adbb2d47 (C3S, 2017). The gross domestic product per
capita 2019 data are downloaded from the World Bank
(https://data.worldbank.org/).

ORCID
Maosheng He https://orcid.org/0000-0001-6112-2499

REFERENCES
Abduljalil, J.M. & Abduljalil, B.M. (2020) Epidemiology, genome,

and clinical features of the pandemic SARS-CoV-2: a recent
view. New Microbes New Infections, 35, 100672.

Abhimanyu, A.K. (2017) Coussens, the role of UV radiation and
vitamin D in the seasonality and outcomes of infectious disease.
Photochemical & Photobiological Sciences, 16, 314–338.

Abraham, J., Dowling, K. & Florentine, S. (2021) Can optimum
solar radiation exposure or supplemented vitamin D intake
reduce the severity of COVID-19 symptoms? International Jour-
nal of Environmental Research and Public Health, 18, 740.

Anderson, R.M., Anderson, B. & May, R.M. (1992) Infectious dis-
eases of humans: dynamics and control. Oxford, England:
Oxford university press.

Cauchemez, S., Valleron, A.J., Boëlle, P.Y., Flahault, A. &
Ferguson, N.M. (2008) Estimating the impact of school closure
on influenza transmission from sentinel data. Nature, 452,
750–754.

Dowell, S.F. (2001) Seasonal variation in host susceptibility and
cycles of certain infectious diseases. Emerging Infectious Dis-
eases, 7, 369–374.

Guha, A., Bonsu, J., Dey, A., & Addison, D. (2020) Community and
socioeconomic factors associated with COVID-19 in the
United States: zip code level cross sectional analysis. medRxiv
Server for Health Sciences. [Preprint] p. 2020.04.19.20071944.

Gunthe, S.S., Swain, B., Patra, S.S. & Amte, A. (2020) On the global
trends and spread of the COVID-19 outbreak: preliminary
assessment of the potential relation between location-specific
temperature and UV index. Journal of Public Health, 30, 1–10.

Hunt, A.G. (2014) Exponential growth in ebola outbreak since May
14, 2014. Complexity, 20, 8–11.

Iqbal, M.M., Abid, I., Hussain, S., Shahzad, N., Waqas, M.S. &
Iqbal, M.J. (2020) The effects of regional climatic condition on
the spread of COVID-19 at global scale. Science of the Total
Environment, 739, 140101.

Isaia, G., Diémoz, H., Maluta, F., Fountoulakis, I., Ceccon, D., di
Sarra, A. et al. (2021) Does solar ultraviolet radiation play a role
in COVID-19 infection and deaths? An environmental ecologi-
cal study in Italy. Science of the Total Environment, 757, 143757.

Kapoor, M., Malani, A., Ravi, S., & Agrawal, A. (2020) Authoritar-
ian governments appear to manipulate COVID data. arXiv:
2007.09566. [Preprint].

Khalatbari-Soltani, S., Cumming, R.C., Delpierre, C. & Kelly-
Irving, M. (2020) Importance of collecting data on socioeco-
nomic determinants from the early stage of the COVID-19
outbreak onwards. Journal of Epidemiology and Community
Health, 74, 620–623.

Kudo, E., Song, E., Yockey, L.J., Rakib, T., Wong, P.W., Homer, R.J.
et al. (2019) Low ambient humidity impairs barrier function
and innate resistance against influenza infection. Proceedings of
the National Academy of Sciences of the United States of Amer-
ica, 166, 10905–10910.

Lai, S., Ruktanonchai, N.W., Zhou, L., Prosper, O., Luo, W.,
Floyd, J.R. et al. (2020) Effect of non-pharmaceutical interven-
tions to contain COVID-19 in China. Nature, 585, 410–413.

Lauer, S.A., Grantz, K.H., Bi, Q., Jones, F.K., Zheng, Q., Meredith, H.
R. et al. (2020) The incubation period of coronavirus disease 2019
(COVID-19) from publicly reported confirmed cases: estimation
and application. Annals of Internal Medicine, 172, 577–582.

Liu, Y., Gayle, A.A., Wilder-Smith, A. & Rocklöv, J. (2020) The
reproductive number of COVID-19 is higher compared to SARS
coronavirus. Journal of Travel Medicine, 27, taaa021.

Maier, B.F. & Brockmann, D. (2020) Effective containment explains
subexponential growth in recent confirmed COVID-19 cases in
China. Science (80), 368, 742–746.

HE ET AL. 9 of 10Meteorological Applications
Science and Technology for Weather and Climate

 14698080, 2022, 5, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.2099 by G

oteborgs, W
iley O

nline L
ibrary on [05/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://data.worldbank.org/
https://orcid.org/0000-0001-6112-2499
https://orcid.org/0000-0001-6112-2499


Martineau, A.R., Jolliffe, D.A., Hooper, R.L., Greenberg, L.,
Aloia, J.F., Bergman, P. et al. (2017) Vitamin d supplementa-
tion to prevent acute respiratory tract infections: systematic
review and meta-analysis of individual participant data. BMJ,
356, i6583.

Nittari, G., Marino, P., Gibelli, F., Sossai, P., Sirignano, A. &
Ricci, G. (2021) Role of meteorological factors in the spread of
the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) pandemic in Italy. European Review for Medical and
Pharmacological Sciences, 25, 7135–7143.

Picoli Junior, S.d., Teixeira, J.J.V., Ribeiro, H.V., Malacarne, L.
C., Santos, R.P.B.d. & Mendes, R.d.S. (2011) Spreading pat-
terns of the influenza A (h1n1) pandemic. PLoS One, 6,
1–4.

Qi, H., Xiao, S., Shi, R., Ward, M.P., Chen, Y., Tu, W. et al. (2020)
COVID-19 transmission in mainland China is associated with
temperature and humidity: a time-series analysis. Science of the
Total Environment, 728, 138778.

Qin, J., You, C., Lin, Q., Hu, T., Yu, S. & Zhou, X.-H. (2020)
Estimation of incubation period distribution of COVID-19
using disease onset forward time: a novel cross-sectional
and forward follow-up study. Science Advances, 6,
eabc1202.

Ratnesar-Shumate, S., Williams, G., Green, B., Krause, M.,
Holland, B., Wood, S. et al. (2020) Simulated sunlight rapidly
inactivates SARS-CoV-2 on surfaces. The Journal of Infectious
Diseases, 222, 214–222.

Sagripanti, J.L. & Lytle, C.D. (2007) Inactivation of influenza virus
by solar radiation. Photochemistry and Photobiology, 83, 1278–
1282.

Sajadi, M.M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-
Wilhelm, F. & Amoroso, A. (2020) Temperature, humidity, and
latitude analysis to estimate potential spread and seasonality of
coronavirus disease 2019 (COVID-19). JAMA Network Open, 3,
e2011834.

Schuit, M., Ratnesar-Shumate, S., Yolitz, J., Williams, G., Weaver, W.,
Green, B. et al. (2020) Airborne SARS-CoV-2 is rapidly inactivated
by simulated sunlight. The Journal of Infectious Diseases, 222,
564–571.

Seber, G.A.F. (2009) Multivariate observations, Vol. 252. Hoboken,
NJ: John Wiley & Sons.

Shaman, J. & Kohn, M. (2009) Absolute humidity modulates influ-
enza survival, transmission, and seasonality. Proceedings of the
National Academy of Sciences, 106, 3243–3248.

Sutton, D., Aldous, E.W., Warren, C.J., Fuller, C.M., Alexander, D.J. &
Brown, I.H. (2013) Inactivation of the infectivity of two highly
pathogenic avian influenza viruses and a virulent Newcastle dis-
ease virus by ultraviolet radiation.Avian Pathology, 42, 566–568.

Tian, H., Liu, Y., Li, Y., Wu, C.H., Chen, B., Kraemer, M.U. et al.
(2020) An investigation of transmission control measures dur-
ing the first 50 days of the COVID-19 epidemic in China. Sci-
ence (80), 368, 638–642.

Ujiie, M., Tsuzuki, S. & Ohmagari, N. (2020) Effect of temperature
on the infectivity of COVID-19. International Journal of Infec-
tious Diseases, 95, 301–303.

Wang, B. & Ho, L. (2002) Rainy season of the Asian-Pacific summer
monsoon. Journal of Climate, 15, 386–398.

Wang, P.X., Wang, B., Cheng, H., Fasullo, J., Guo, Z.T., Kiefer, T.
et al. (2017) The global monsoon across time scales: mechanisms
and outstanding issues. Earth-Science Reviews, 174, 84–121.

Whittemore, P.B. (2020) COVID-19 fatalities, latitude, sunlight, and
vitamin D. American Journal of Infection Control, 48, 1042–
1044.

Yao, Y., Pan, J., Liu, Z., Meng, X., Wang, W., Kan, H. et al. (2020)
No association of COVID-19 transmission with temperature or
UV radiation in Chinese cities. The European Respiratory Jour-
nal, 55, 2000517.

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: He, M., Fang, K., Zhou,
F., Ou, T., & Chen, D. (2022). A delayed
modulation of solar ultraviolet radiation on the
COVID-19 transmission reflects an incubation
period. Meteorological Applications, 29(5), e2099.
https://doi.org/10.1002/met.2099

10 of 10 HE ET AL.Meteorological Applications
Science and Technology for Weather and Climate

 14698080, 2022, 5, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.2099 by G

oteborgs, W
iley O

nline L
ibrary on [05/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/met.2099

	A delayed modulation of solar ultraviolet radiation on the COVID-19 transmission reflects an incubation period
	1  INTRODUCTION
	2  DATA ANALYSES AND RESULTS
	2.1  Evolution of the outbreak in an example country: Stages of the confirmed case growth
	2.2  Statistical evolution of the outbreak
	2.3  The statistical stage modulated most sensitively by weather
	2.4  The daily growth rate in percentage and its geographical distribution
	2.5  Correlations of the daily growth rate with the meteorological factors
	2.6  A cross-correlation analysis suggests an incubation period
	2.7  On the subjectively defined parameters

	3  DISCUSSIONS AND CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	REFERENCES


