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Tree-ring recorded variations of 10 heavy metal
elements over the past 168 years in southeastern
China

Shiyin Chen1, Qichao Yao2, Xiuling Chen1, Juan Liu3, Deliang Chen4, Tinghai Ou4,
Jane Liu1,5, Zhipeng Dong1, Zhuangpeng Zheng1, and Keyan Fang1,*

Heavy metal pollution is a serious concern in the urban area of China. Understanding metal pollution history is
crucial for setting up appropriate measures for pollution control. Herein, we report a record of concentrations
of 10 heavy metals (Fe, Mn, Cu, Zn, Ni, Cr, Cd, Pb, Co, and Sr) in Pinus massoniana tree rings from Fuzhou City over
the past 168 years, which represents the longest tree-ring chronology of heavy metals in China. The studied
metals displayed contrasting distribution patterns. Among them, Mn and Sr showed the strongest migration
trend with peak concentrations at the pith. Co, Cd, and Pb also showed distinctively high concentrations near
the boundary between heartwood and sapwood. Ni, Cu, Cr, and Fe showed an increasing trend possibly due to
migration toward bark caused by physiological activities and increasing tourism activities and traffic pollution.
The other elements (Cr, Fe, and Zn) with low migration revealed the historical pollution possibly discharged by
the Fuzhou Shipping Bureau and other anthropogenic activities. Strong correlations between Cu content and
temperature were found, which provides an alternative tree-ring proxy for climate reconstruction.This study
provides a long-term perspective of the joint impacts of physiological, environmental, and climatological
factors on the concentrations of heavy metals in southeastern China.
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1. Introduction
With the acceleration of industrialization and urbanization,
pollution caused by increasing concentration of heavy
metal elements has become a serious concern in Anthro-
pocene epoch, particularly for urban areas, due to heavy
traffic, coal combustion, various industrial activities, and
waste disposal (Craul, 1999; Buszewski et al., 2000; Rucan-
dio et al., 2011; Parzych and Jonczak, 2013, 2014; Wang et
al., 2020a). Heavy metals with molecular weights over 40
are difficult to be decomposed or removed, and even a low
concentration of heavy metals in soil and vegetation can
cause harmful effects to survival and health of plants, ani-
mals, and human beings (Tan, 2004; Liu et al., 2017, 2020a,

2020b, 2021). To effectively control contamination, it is
prerequisite to comprehend the temporal evolution of hea-
vy metal elements and their interactions with biospheres,
atmosphere, hydrosphere, and soil (Yang et al., 2012; Liu et
al., 2019a, 2019b, 2019c, 2020c; Wang et al., 2020b, 2020c;
Wei et al., 2020). Unfortunately, routine monitoring for the
heavy metal elements often has a short time span with
strong industrial activities. Therefore, long-term proxy data
are crucial to evaluate the anthropogenic pollution history
of heavy metals. Among these proxy data, tree-ring proxy is
widely used, since it is not only accurately dated and highly
resolved but also widely distributed, which can provide the
evolution of chemical components across both space and
time (Wen et al., 2004; Xu, 2004).

A basic hypothesis of dendrochemistry is that the che-
mical composition of tree rings reflects the environmental
chemical composition of the year when tree rings were
formed (Watmough, 1999). It was widely accepted that the
heavy metal elements tend to translocate after entering
from phloem to xylem (Bondietti et al., 1989). Migrations
of heavy metal elements in tree rings are influenced by
both environmental conditions and tree physiological pro-
cesses (Hagemeyer and Lohrie, 1995; Watmough and
Hutchinson, 2002, 2003; Bindler et al., 2004; Monticelli
et al., 2009). Knowledge on the element concentration in
tree rings can not only provide information of forest
health (e.g., Innes, 1993), soil chemistry (e.g., Augustin
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et al., 2005; Wang et al., 2005; Kuang et al., 2007, 2008),
pollution (e.g., Nabais et al., 1999; Smith et al., 2008),
climate (e.g., St. Clair et al., 2008; Witt et al., 2017; Hevia
et al., 2018), and environmental events (e.g., volcanic erup-
tions; Pearson et al., 2005, 2006, 2009a, 2009b; Sheppard
et al., 2008, 2009), but, more importantly, it can provide
important information on element exchanges between
environment and biospheres.

Lepp (1975) first proposed the conceptofdendrochemistry
and successfully reconstructed the history of trace elements
using tree rings. Many studies have documented coherent
variations of element concentration in tree rings and polluted
environment and suggested the efficiency of the tree rings as
environmental biomonitors for the history of heavy metal
elements in urban and industrial areas as well as in the rural
areas (Base and Mclaughlin, 1984; Watmough, 1999; Patrick
and Farmer, 2006; Lageard et al., 2008; Zhang et al., 2008; Liu
et al., 2009;Mihaljevič et al., 2011). In China, Liu et al. (2009a,
2009b) revealed the history of chemical element pollution in
northwestern China. Wang et al. (2005) found different
adsorption levels of elements in different tree species. Pinus
massoniana is widely distributed in southern China and is
sensitive to air pollution (acid deposition), and heavy metals
in the tree ringsofP.massoniana are closely related to the local
environmental changes (Hou et al., 2002a; Kuang et al., 2007).
Althoughnumerous tree-ring-basedpollution reconstructions
have been conducted, researches on urban pollution in China
were limited to a few decades and a few cities. A short-term
tree-ring data may limit the ability to fully comprehend the
migrations of heavy elements across tree rings. In this study,
we developed 10 heavy metal element sequences for the past
168 years from P.massoniana in Fuzhou city, provincial capital
of Fujian province, which are to our knowledge the longest
tree-ring-based heavy metal series in southeast China. Based
on these series, we aim to reveal their responses to physiolog-
ical, environmental, and climatic factors and to provide a long
context of the heavy metal element history of the environ-
ment over the past 168 years.

2. Data and methods
2.1. The study area and sampling

The study area of Fuzhou city is located western to the
Taiwan Strait, about 41 km to the East China Sea (Figure
1). It is characterized as a typical subtropical marine mon-
soon climate with an annual mean temperature of 19.9 �C
and an annual total precipitation of 1391 mm according
to the measurements during 1953–2016 at the Fuzhou
meteorological station.

Our tree-ring sampling site (26.06�N, 119.40�E, 870.3
m a.s.l.) of Gu Mountain is located to the southeast Fuz-
hou city, which is the highest mountain in Fuzhou city.
The sampling site is near roads and hiking trails and was
influenced by human activities such as tourism and indus-
trial activities. Soil of the study site is classified as Humic
Acrisols (pH¼ 4.32; Chen, 2001). Soil in the low-lying area
of Fuzhou City generally has high soil organic matter
content and is subjected to different types of heavy metal
pollution associated with the different types of industrial
activities (Chen et al., 2011). The study site is dominated

by P. massoniana and intermixed with other species such
as Cunninghamia lanceolata and Castanopsis carlesii.

The tree-ring cores were collected from trees near
a major road from the foot (elevation 119.43 m) to the top
(elevation 525.79 m) of the mountain. Two to three cores
were collected from each tree using 5-mm-diameter incre-
ment borer at the breast height of different orientations.
The samples were mounted, air-dried, and polished with
sandpaper until the cellular structure can be clearly identi-
fied. The cross-dated series were measured to a precision of
0.001 mm. Finally, we retained a total of 54 cross-dated
tree-ring samples from 27 trees with a length of 168 years.
Surface soil samples were collected from 10 plots under
sampling trees using a stainless steel trowel and then were
air-dried and stored in plastic bags prior to analysis.

2.2. Measurement of the heavy metal elements in

tree rings and topsoil

The dated tree-ring cores were ultrasonically cleaned by
Double deionized water (Milli-Q Millipore 18.2 resistivity)
for 1 h in order to eliminate any surface contaminants
introduced by coring or handing, which were dried after-
wards. The annual rings of the cores were stripped with
a thin stainless steel blade under a binocular microscope.
The rings formed in the same calendar year were mixed
together and stored in a sealed bag. A 0.05 g sample was
immersed in 2 ml of HNO3 and 2 ml of H2O2 in a PTFE
vessel digesting at 150 �C for 18 h. The solutions were
then diluted with 5% nitric acid to a final volume of 40 ml
and were subsequently filtered using 0.45 mm syringe
filters. For calibration, the standard material and a blank
sample were digested simultaneously. Soil samples for
chemical analysis were sieved and pestled in an agate
mortar. Soil samples (0.04 g) were digested in 0.5 ml
HNO3 and 1.5 ml HF for 14 h at 150 �C. Add 0.25 ml
HClO4 after cooling, the mixture was dried on an electric
hot plate until it turned into white ash. And 2 ml dd-H2O
and 1 ml HNO3 were added to the white ash. After di-
gested at 150 �C for 14 h, samples were diluted to 40 ml
using dd-H2O at final volume.

Quality control/assurance of the measurements in-
cludes: (1) the calendar years of heavy metal elements
were determined by the cross-dating, which was checked
by the COFECHA program (Homes, 1983) to ensure the
accuracy of cross-dating; (2) in order to remove the insol-
uble residue on the experimental vessel, all the experi-
mental PTFE was heated at 150 �C for 12 h, washed
three times with ultrapure water, and soaked overnight;
(3) all instruments were rinsed with pure alcohol after the
treatment of each sample to avoid potential contamina-
tion of samples; (4) the reagents used in the digestion
process are analytically pure reagents; (5) recoveries of
standard plant and soil samples ranged from 93% to
102%; and (6) when performing elemental analysis, the
correlation coefficient of the standard curve is controlled
above 0.999, and a correction is performed when a certain
sample amount is tested.

Concentrations of heavy metal elements of Fe, Mn,
Cu, Zn, Ni, Cr, Cd, Pb, Co, and Sr were measured by the
inductively coupled plasma mass spectrometry. In order
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to reduce the matrix effect of the sample solution, inter-
nal standard elements of Rhodium and Rhenium, which
are not contained in the solution and are close to the
mass number of measured elements, were used as inter-
nal standard elements. The parallel test of relative stan-
dard deviation was lower than 5%, indicating that the
machine runs smoothly. The calibration curve furnished
good linear correlation coefficients (0.99982–0.99999)
in our study.

2.3. Statistical analysis

Pearson correlations were calculated between different
elements to detect their linkages and between elements
and climatic variables (temperature and precipitation)

during their common period from 1953 to 2016 to study
the potential influence of climate. In addition, we calcu-
lated the autocorrelation as the correlation between con-
secutive years to represent the dependence of element
contents in current year to the previous years. To alleviate
the influence of trends on correlations, we additionally
calculated the Pearson correlations for the first-order dif-
ference data. The first-order difference data were calcu-
lated as the residuals between consecutive years, which
were normalized by their mean.

Apart from the Pearson correlation (Figure 2a and
b), we employed an agreement measure of the year-to-
year variation called Gleichläufigkeit coefficient (Eckstein
and Bauch, 1969; Figure 2c) to evaluate the degrees of

Figure 1. Location and study region. (a) Location of the study region in China, locations of the (b) Fuzhou city and (c)
the Gu Mountain in the study region, and the (c) photos of the sampling site at the Gu Mountain. DOI: https://
doi.org/10.1525/elementa.2020.20.00075.f1
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agreement between elements on the high frequency
domain. This statistic only examines whether the varia-
tions of two sequential values are matched or not but
does not take into account the differences between the
values. It is expressed as the percentage of cases of
agreement (Allan Buras and Martin Wilmking, 2015),
representing the degree of similarity within a number
of time series on the high frequency domain (Schwein-
gruber et al., 1993).

Principal component analysis (PCA; Richman, 2010)
was used to identify the covariation patterns of ele-
ments. This method was widely applied to group differ-
ent elements, which can be used to help assess
the sources and absorption mechanisms of heavy metal
elements in tree rings (Rodrı́guez-Catón et al., 2015;
Marija et al., 2017). Hierarchical Cluster analysis was
used to analyze the similarity of the concentrations
of different elements in P. massoniana from 1848 to
2016 (Figure 3).

3. Results
3.1. Heavy metal elements in soil and tree rings

As shown inTable1, six elements (Cr, Co,Ni, Cu, Zn, andAs) in
topsoil are lower than the allowable threshold concentrations
of the national standards (GB15618–1995), except for Sr and
Pb. A low concentration of most of the heavy metal elements
standard suggests that pollution in Gushan area is not severe
due to relatively low industrial activities compared with other
low-lying areas. The content of Pb surpassed the first-level
national soil standard (35mg/kg) but still is much lower than
the second-level national soil standards (250 mg/kg) set by
the National Environmental Protection Agency. The ratios
were calculated between element concentration in tree rings
and soil as the absorption coefficient (Kf¼ T/S) (Table 1). Cr
has the highest absorption coefficient (Kf ¼ 0.710), followed
by essential nutrients for plants such as Zn and Cu. The ele-
ments of the Ni, Co (Kf¼ 0.023) and Pb (Kf¼ 0.018) have the
lowest absorption coefficient. There is no significant correla-
tion between heavy metal elements and tree-ring width.

Figure 2. Correlation between elements from 1848 to 2016. (a) Direct correlation and (b) first-order difference
correlations between elements during their common period (1849–2016); (c) gleichläufigkeit score of 10
metal element concentrations of Pinus massoniana during 1848–2016 in Gu Mountain. *Means significant
correlation at 0.05 level. **Means significant correlation at 0.01 level. DOI: https://doi.org/10.1525/
elementa.2020.20.00075.f2
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Figure 3. Cluster analysis for variations of 10 element concentrations in the tree rings from 1848 to 2016. DOI: https://
doi.org/10.1525/elementa.2020.20.00075.f3

Table 1. Element concentrations (mg/kg) in topsoil. DOI: https://doi.org/10.1525/elementa.2020.20.00075.t1

ID Cr Coc Ni Cu Zn As Src Pb

GS01 30.912 4.142 11.345 7.734 54.190 4.647 28.478 35.333

GS02 13.617 3.848 5.297 7.816 86.212 3.992 43.354 63.120

GS03 16.468 4.631 6.591 6.268 58.690 3.765 35.745 42.791

GS04 22.105 4.938 7.827 9.708 67.618 5.281 38.013 49.454

GS05 18.330 4.028 7.150 9.194 63.442 4.948 38.595 46.325

GS06 25.456 8.019 10.454 13.369 74.574 6.421 30.238 64.697

GS07 26.757 6.242 10.904 14.437 78.942 7.012 41.950 54.990

GS08 19.074 2.953 5.087 8.324 53.932 4.263 54.295 42.338

GS09 23.167 3.388 7.883 10.136 70.903 5.291 36.236 41.697

GS10 14.184 1.834 4.645 5.249 40.877 3.764 29.064 30.219

Average 21.007 4.402 7.718 9.224 64.938 4.938 37.597 47.096

STD1a 90 40 35 100 15 35

STD2b 41.3 7.41 13.5 21.6 82.7 5.78 34 34.9

Kf 0.710 0.023 0.125 0.190 0.333 0.047 0.018

aSTD1 means the background values of the suburban soil in Fujian province.
bSTD2 means the background values of the suburban soil in China. The environmental quality standard for soils is
GB15618-1995.
cCo and Sr have no soil standard value in China at present.
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3.2. Temporal variations of heavy metal elements

and their correlations with climate

Heavy metal element concentration in our tree rings
spans from 1848 to 2016. Trends of heavy metal ele-
ments of the Gu Mountain can be divided into four
categories according to cluster analysis and PCA results
(Figure 3). There is higher within-group correlations
(Figure 2a, b) and Gleichläufigkeit score (Figure 2c)
than between groups. We classify Mn and Sr as Type 1,
which shows a steady declining trend (Figure 4a) rang-
ing from 40.0 to 324.6 mg/g and 1.8 to 9.6 mg/g, respec-
tively. Relative to Sr, Mn shows a slight upward trend
from 1860 to 1876. Ni and Cu were classified as Type 2,
which showed an increasing trend (Figure 4b) with a cor-
relation of 0.55.

Different from a continuous upward trend for Cu, Ni
shows stronger interdecadal variations such as a downward
trend from 1880 to 1917. Concentrations of Co, Cd, and
Pb, classified as Type 3, showed an increasing trend before
1940 but a lapsing trend afterwards, particularly for Pb
(Figure 4c). Concentrations of Co and Cd then increase
since 1864 and reach the peak during the 1920s–1940s.
The correlations between Co and Cd, between Cd and Pb,
and between Co and Pb are 0.73, 0.69, and 0.56, respec-
tively. The remaining elements of Cr and Fe were classified
as Type 4 with a correlation of 0.83, which display

interdecadal fluctuations but no clear trend (Figure 4d).
Mn, Sr, Co, Cd, and Pb with strong trends showed a stron-
ger autocorrelation of a 3-year lag effect, whereas the rest
elements (Ni, Cu, Cr, Fe, and Zn) have a weak autocorre-
lation (Table 2).

The heavy metal elements showed significant correla-
tions with climate variables, except for Zn (Figure 5). In
general, these elements have positive correlations with
the temperature from August to November and the pre-
cipitation in October, and negative correlations with the
relative humidity. Cr shows a significant correlation with
precipitation in October (0.44) and is negatively corre-
lated with relative humidity in August and September.
The correlations between Fe, Ni, and Cu concentrations
and relative humidity are more significant than the
monthly temperature and precipitation. Ni shows signif-
icant negative correlations with relative humidity, partic-
ularly in August (–0.43). The correlations with climate
are similar between Cu and Fe, which shows close
correlations with the temperature in August–November
and the relative humidity in July–September. The rela-
tionship between climate factors of the previous year
and elements in tree rings show that the elements have
no significant correlation with the precipitation of the
previous year, but it still keeps the correlation with the
temperature from May to August (Figure 6).

Figure 4. Time series of four groups for the element concentration revealed in tree rings. (a) Mn and Sr; (b) Ni and Cu; (c)
Co, Cd, and Pb; (d) Cr, Zn, and Fe. The thin line represents the original data of the element, and the thick line is the
curve after Savitzky–Golay smoothing. DOI: https://doi.org/10.1525/elementa.2020.20.00075.f4
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4. Discussion
4.1. Transportation of heavy metal elements from

soils to tree rings

There are three ways for heavy metal elements to enter
trees: (1) absorbed by root from soil moisture, (2) by leaves
from air, and (3) direct deposition onto stem segments
(Lepp, 1975). Previous studies have shown that most hea-
vy metal elements were absorbed by roots (Watmough and
Hutchinson, 2003). Absorption of different heavy metal
elements varies for different tree species, soil types, and
pH (Injuk et al., 1987; Vimmerstedt and McClenahen,
1995; Kirchner et al., 2008). The lowest absorption ratio
for Co and Pb may be because that they are toxic to trees.
Although the absorption ratio for Pb is low, its concentra-
tion is higher than national quality standard. This may be
caused by the use of lead petrol from vehicles as the study
sites are close to road (Lombardo et al., 2001).

4.2. Radial migration of heavy metal elements

The mobility of elements across tree rings varies in differ-
ent tree species at different biological traits such as differ-
ent tree age, heartwood–sapwood patterns, under
different regions of changing environmental conditions
such as pollution sources, climate patterns, acid deposi-
tions, requiring such investigations for different trees in
different regions (Smith and Shortle, 2003; Cui et al.,
2013). Influences of physiological processes on element
concentration vary depending on tree species and element
(Brackhage et al., 1996). These physiological processes can
cause biased element concentration in tree rings from the
environment, such as a steady decline from pith to bark
and a peak element concentration between the heartwood
and sapwood (Liang and Huang, 1992).

The strong decline trends from pith to bark for Sr and
Mn observed in this study were also found in Jeffrey
pine (Pinus jeffreyi) from the Tahoe Basin, California,
(Kirchner et al., 2008). The strong decline trend for Mn
may be because that it is an essential element for met-
abolic processes of photosynthesis and respiration (Mar-
ija et al., 2017). Continuous consumption of Mn in soil
can contribute to the lapsing trend in bioavailability in

Table 2. The autocorrelation coefficients of the 10 ele-
ments. DOI: https://doi.org/10.1525/elementa.2020.
20.00075.t2

No. Mn Sr Ni Cu Co

1 0.94** 0.96** 0.67** 0.47** 0.61**

2 0.92** 0.94** 0.65** 0.39** 0.53**

3 0.90** 0.94** 0.58** 0.41** 0.42**

Cd Pb Cr Fe Zn

1 0.89** 0.94** 0.39** 0.35** 0.16*

2 0.84** 0.92** 0.22** 0.17* 0.23**

3 0.81** 0.90** / / /

*Means significant correlation at 0.05 level. **Means significant
correlation at 0.01 level.

Figure 5. Correlations between elements and
(a) temperature, (b) precipitation, and (c) of the
previous year. DOI: https://doi.org/10.1525/elementa.
2020.20.00075.f5

Figure 6. Correlations between elements and (a)
temperature of the previous year. The line means
significant correlation at 0.05 level. DOI: https://
doi.org/10.1525/elementa.2020.20.00075.f6
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soil, causing a decline trend in Mn from pith to bark
(Hevia et al., 2018).

Accumulation of heavy metal elements at the heart-
wood–sapwood boundary from the 1920s to 1940s was
also reported in previous studies (Donnelly et al., 1990;
Xu, 2004)—for example, a peak concentration of Pb and
Cd near the heartwood–sapwood boundary in P. massoni-
ana (Xu, 2004) and Ponderosa pines (Cui et al., 2013) in
Shenyang city. Watmough and Hutchinson (2002) found
that the concentrations of Pb in Scots pine and oak
peaked near the heartwood–sapwood boundary. These
elements are often toxic elements, and trees can trigger
a “detoxification mechanism” by transporting them from
the active part, sapwood, to the inactive part, heartwood
(Donnelly et al., 1990; Xu, 2004; Cui et al., 2013).

4.3. Pollution history recorded in heavy elements

Previous studies have proved ability of the tree rings of P.
massoniana to record pollution history (Hou et al., 2002a,
200b; Kuang et al., 2007). The increases in Cu and Ni
generally agree with the enhancement of tourism and
industrial activities and the known pollution history, spe-
cifically recorded undulations (Wang, 2005). Although Cr,
Fe, and Zn (Type 4) have weakest migration across rings in
our species, different species can have varying migration
ability for Zn. For example, Zn can migrate across rings in
Pinus tabulaeformis and Toona sinensis for 3 years, but
there is no migration for Zn in Firmiana simplex (Liu et
al., 2009a, 2009b). Since Cr, Fe, and Zn have the lowest
migration ability, they can well reflect the environmental
history (KabataPendias, 2011). The peak concentration of
Cr, Fe, and Zn that occurred from 1880 and 1900 may be
associated with the heyday of iron ship construction from
1880 to 1907 of the Fuzhou Shipping Bureau including
shipyards, iron foundries, and other enterprises, which is
less than 4 km from our tree-ring site.

4.4. Climate-element relationships

Heavy metal concentration in tree rings can also be
modulated by climate by affecting the pollution path-
ways (e.g., via leaf stomata) and physical processes
(metabolism activities) of trees (Jónsdóttir et al., 2005;
Sardans and Peñuelas, 2007; Sardans et al., 2008). This
may explain the strong correlations (0.44, 0.39, and
0.44) between Cr, Fe, and Cu and the precipitation in
October. There is no significant correlation between ele-
ments and precipitation in the previous year, which may
indicate that the effect of precipitation on element
absorption is more immediate. Actually, their correla-
tions with climate are even higher than the correlations
with tree-ring width and stable carbon isotopes in this
area (Li et al., 2016). During wet conditions, these ele-
ments may be more soluble and easier to be absorbed by
trees. In addition, some elements can easily enter leaves
due to high stomatal conductance under wet conditions
(Hagemeyer and Prasad, 1999; Fernández, 2013). On the
other hand, a wet condition can cause stomata closure
and plant cuticles to contract, inhibiting heavy metal
elements from entering the leaves (Shahid et al., 2016).
Tree-ring data have been widely used for climate

reconstructions in arid and cold China, but they are less
sensitive to hot and humid regions (Fang et al., 2017a,
2017b). The high correlations between heavy metal ele-
ments and climate suggest that they could be considered
as alternative tree-ring proxy for reconstructing past cli-
mate in hot and humid regions.

5. Conclusions
This study provides the longest series of 10 heavy metal
elements in tree rings of the past 168 years collected
from Gu Mountain of Fuzhou areas in southeastern
China. Heavy metal elements in tree rings are jointly
modulated by environmental pollution, migrations
across rings, and climate change. The 10 elements were
classified into four types with Type 1 (Mn and Sr) show-
ing strongest migration effect from the bark to peak,
leading to a lapsing trend from pith to bark. Type 2
(Co, Cd, and Pb) has moderately strong migration ability
to shift these elements to the boundary between heart-
wood and sapwood. The other two types show limited
migration, and Type 3 (Ni and Cu) seems to indicate an
intensified pollution caused by tourism development
and increased transportation. The high concentration of
Cr and Fe in Type 4 between 1880 and 1900 coincides
with the pollution associated with the heyday of iron
ship construction in Fujian Shipping Bureau. We also
found Cu and Fe showed strong correlations with the
relative humidity in July–September. This suggests the
modulation of climate on heavy metal in tree rings and
the potential for using the heavy metal elements for
climate reconstruction in regions where other tree-ring
proxies have little climate sensitivity.
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