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Preface

This compendium has been prepared for the benefit of the AMAP workshop in

Oslo May 14–16, 2007, the Norklima-project (funded by the Norwegian Research

council), the IPY-project EALÁT, Norwegian-Chinese collaborations, and a sum-

mer course organised by the Dept. of Meteorology and Climatology, University of

Lodz, Poland, June 18–22, 2007. As climate change appears to have increasingly

greater effect on local climate, the question of implications for the ecosystem and

society becomes more and more pressing. Especially ’impact studies’ rely on local

climate parameters as inputs for calculating the effect on the biosphere or on so-

ciety. Another motivation behind this compendium is the notion of the need for

an illustrated and easily read comprehensive text on empirical-statistical down-

scaling, starting from basic principle and containing plenty of working examples.

The compendium is based on numerous reports on downscaling and previous notes

used in teaching statistics at the University of Bergen and Gothenburg. We hope

that this compendium also will help researchers working on impact studies.
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Chapter 1

Introduction

Figure 1.1: The glasses here symbolise the techniques which provide a more de-
tailed picture, an anology to downscaling.

1.1 History

The first account of empirical or statistical downscaling can be traced to
Klein (1948), and a brief account of the early history of statistical predictions
can be found in Klein and Bloom (1987). The first references to statistical
downscaling activity is from numerical weather forecasting, and was then
referred to as ’specification’.

11



V
er
si
o
n
0
-9

12 CHAPTER 1. INTRODUCTION

In the early 1980s (Baker, 1982; J.-W. Kim and Gates, 1984) statistical
downscaling was referred to as ’Statistical Problem of Climate Inversion’.
However, similar techniques, so-called ’Model Output Statistics’ (MOS) and
the ’prefect prog’ approach (Wilks, 1995) have been used in numerical weather
forecasting since the early 1970s (Baker, 1982).

One reason why downscaling is a relatively young science is that it relies
on the presence of global climate models, which themselves represent recent
advances in the climate science community.

There have since then also been some nice reviews of empirical-statistical
downscaling (ESD) work (Christensen et al., 2007; Wilby et al., n.d.;
Houghton et al., 2001; von Storch et al., 2000). However, these have been
concise and not sufficiently comprehensive provided texts on the right level
necessary for teaching purposes, since they tend to assume a priori knowledge
which a student who tries learn the subject may not have. Furthermore, these
reviews have not captured some of the latest progress in this field, i.e. from
work carried out in Scandinavia and Eastern Europe. Hanssen-Bauer et al.
(2005), however, provided a review of the ESD-based work from Scandinavia.

Most of the literature on ESD has focused on Europe, although there
are some publications with an North American focus (Lapp et al., 2002;
Easterling, 1999; Schoof and Pryor, 2001; Salathé, 2005), as well as for Aus-
tralia/New Zealand (Kidson and Thompson, 1998), Africa (Reason et al.,
2006; Penlap et al., 2004), and southeast Asia (Oshima et al., 2002; Das and
Lohar, 2005). This compendium, however, will not dwell with the regional
aspects, as the focus here will be on the methods rather than the results.

There is a number of reports and papers on ESD, but the various con-
tributions are scattered across a large number of report series and journals.
Here we want to collect some of these in one volume, with a proper indexing
and table of contents in order to make it easy for the readers to look up the
topics and use the text as a compendium.

We also want to have a text which bridges the theoretical aspects with
practical computer codes of problem solving. It is also our intention that the
compendium provides some new and good illustrations for ESD and supple-
ment the discussions with practical examples. Finally, we will attempt to
divide the text into more readable main section and more detailed mathe-
matical treatment in separate coloured boxes.
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Table 1.1: A list of typical drawbacks associated with the different models
commonly used in climate research (from Imbert and Benestad (2005)).

GCMs May have systematic biases/errors.
Unable to give a realistic description of local climate in gen-
eral.
Processes described by parameterisation may be non-
stationary.

Nested RCMs May have systematic biases/errors.
Require large computer resources.
Processes described by parameterisation may be non-
stationary.
Often not sufficiently realistic description of local cli-
mate (Skaugen et al., 2002b).

empirical downscaling:

Analog models Cannot extrapolate values outside the range of the calibra-
tion set.
Do not account for non-stationary relationships between the
large-scale and local climate.
Needs a large training sample (often unsuited for monthly
means)
Do not ensure a consistency in the order of consecutive days.

Linear models Assume normally distributed data.
Tend to reduce the variance.
Do not account for non-stationary relationships between the
large-scale and local climate.
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14 CHAPTER 1. INTRODUCTION

1.2 The lay-out

Each chapter will contain an introduction of the concept, a theoretical dis-
cussion, illustrations, and a description of the mathematical notations. We
will provide some practical examples, and a number of problems are given at
the end in order for the reader to test her/him-self to see if the most impor-
tant concepts are understood.The text will also include some mathematical
treatment, but if it is above the most basic level, it will be separated from
the main text and be placed in its own text box. The problems marked
with an asterisk (’*’) are advanced questions which require some analytical
deduction.

There will be specific examples of how relevant concepts are formulated in
the R-environment (Gentleman and Ihaka, 2000). The R-environment has a
very nice searchable on-line help feature1, and is a freely available open-source
numerical tool available from the Internet site http://cran.r-project.org
(henceforth referred to as the ’CRAN site’ or just ’CRAN’). Several R-packages
have been compiled which can be used for empirical-statistical downscaling or
general climate analysis, notably clim.pact (Benestad, 2004b, 2003a), anm
(Imbert and Benestad, 2005) and iid.test (Benestad, 2004d, 2003d). These
packages are available from CRAN under the link labelled ’contributed’.
A fourth package which may be relevant to some studies is the package
cyclones (Benestad and Chen, 2006). These packages will be used in the
examples in the text below.

1.3 Concepts and definitions

1.3.1 The problem: What is downscaling & Why down-

scaling

What is downscaling?

The very basic question to be addressed first is What is downscaling? Here
we will define downscaling as the process of making the link between the

1type ’help.start()’ and a help manual appears in the browser
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state of some variable representing a large space (henceforth referred to as
the ’large scale’) and the state of some variable representing a much smaller
space (henceforth referred to as the ’small scale’).

Another view of ESD is that it basically is just an advanced statistical
analysis of the model results.

The large-scale variable may for instance represent the circulation pattern
over a large region whereas the small scale may be the local temperature
as measured at one given point (station measurement). Figure 1.2 shows
a map of correlation between the sea level pressure (SLP) and the North
Atlantic Oscillation (NAO) index, bringing out the essence of the large-scale
conditions: the SLP-field is correlated with SLP over Lisabon (Portugal) and
anti-correlated with the SLP measured in Stykkisholmur (Iceland).

Another important characteristic, which we will return to later, is that
the large-scale variable varies slowly and smoothly in space, which is reflected
in the smooth correlation contours.

The small-scale variable may be a reading from a thermometer, barome-
ter, or the measurement made with a rain gauge. It is crucial that the link
between the large-scale and the small-scale is real and physical, and not just
due to a statistical fluctuation, coincidence, or an artifact of the statistical
methods employed. ESD assumes an implicit and fundamental link between
the two scales.

It is important to distinguish the two concepts large-scale and large vol-
ume/area. The two are not necessarily the same, as a large volume may
contain many noisy and incoherent small-scale processes.
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Figure 1.2: Example of a large-scale variable, shown as a correlation map between
the SLP and the NAO index.

One crucial question is whether the variable representing the large scales
variable used in ESD varies slowly and smoothly. If it does, then the spatial
scale is large, but if there are pronounced changes over small distances, then
the spatial scale is smaller. Thus, if the local variable is taken inside the
space over which the large-scale is defined, then a significant part of the
space necessarily co-varies (i.e. has a high correlation with) with the small-
scale variable.

In a sense, the term ’small-scale’ may be a bit misleading, as we mean
’local’ rather than a process which only involves small spatial scales. In fact,
the local process must be associated with large-spatial scales for downscaling
to be possible.

To illustrate of the concept of scales, let’s consider the a region where
tend to be frequent scattered cumulunimbus clouds (convective clouds). The
rainfall at one point is determined by the local presence of a cloud and
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it’s characteristics rather than the properties over a larger area. Thus, the
spatial scale of the cloud process does not increase by looking at larger area
or volume.

Figure 1.3: Example of a small-scale variable: in-situ temperature readings rep-
resenting the conditions at one particular location.

The essence of ESD is to identify synchronised or ’matching’ time be-
haviour on large- and small scales, hence practical ESD focuses on the time
dimension. We will henceforth refer to the character of temporal variation,
which in mathematics can be described as a function of time, as ’time struc-
ture’. The implication of similar time structure on different spatial scales is
a high temporal correlation.

Figure 1.4 illustrates the concept of time structure: the left panel shows
some made up time series whereas the right panel shows real observations.
The x-axis represents the time, running from left to right, and the data are
shown in chronological order (time series). The time series with coherent
variations in time have similar time structures, although their magnitude
may be different.

Why downscaling?

The second important question is: Why downscaling? The answer to this
question is connected to a specific purpose, such as using global climate
models to make an inference about the local climate at a given location. The
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Figure 1.4: Examples of ’time structure’. There the black and grey curves in the
left panel have similar time structure, but vary in amplitude. The red curve has
a different time structure. Left panel shows typical time structures from the real
world.

global mean value of for instance temperature is usually not directly relevant
for practical use.

Global general circulation models (GCMs) represent an important tool
for studying our climate, however, they do not give a realistic description
of the local climate in general. It is therefore common to downscale the re-
sults from the GCMs either through a nested high-resolution regional climate
model (RCM) (Christensen and Christensen, 2002; Christensen et al., 2001,
1998) or through empirical/statistical downscaling (von Storch et al., 1993a;
Rummukainen, 1997). The GCMs do not give a perfect description of the
real climate system as they include ’parameterisations’ that involve simple
statistical models giving an approximate or ad-hoc representation of sub-grid
processes.

In order to balance the air-sea exchange of heat and freshwater fluxes,
some GCMs also need to employ a so-called ’flux correction’ (e.g. because of
a mis-match in the horizontal transport in coarse resolution oceanic models
and atmospheric models). Several state-of-the-art GCMs do not use flux
correction but often produce local biases (Benestad et al., 2002) despite
giving a realistic representation of the climate system on continental and
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global scales.
It is important to keep in mind the limitations of statistical downscaling,

especially when applied to model results from Green House Gas (GHG) in-
tegrations using GCMs. The statistical models are based on historical data,
and there is no guarantee that the past statistical relationships between dif-
ferent data fields will hold in the future. In the Model stationarity section, we
have applied a simple sensitivity test to see if the statistical model can be ex-
trapolated to situations where the northern hemisphere generally is warmer
than during the model training period.

One should also be concerned about the uncertainties associated with the
GCM results as well as those of the downscaling methods themselves (Wilby
et al., 1998). It is well known that low resolution GCMs are far from perfect,
and that they have problems associated with for instance cloud represen-
tation, atmosphere-ocean coupling, and artificial climate drift (Bengtsson,
1996; Anderson and Carrington, 1994; Treut, 1994; Christensen et al., 2007).

Part of the problems are due to incomplete understanding of the climate
system. The important mechanisms causing variability such as ENSO and
NAO for instance are probably still not completely understood (Sarachik
et al., 1996; Anderson and Carrington, 1994; Philander, 1989; Christensen
et al., 2007). Due to discretisation and gridding of data, it is unlikely that the
global GCMs will simulate regional details realistically (Crane and Hewitson,
1998; Zorita and von Storch, 1997; von Storch et al., 1993b; Robinson and
Finkelstein, 1991).

However, because a wide range of global GCMs predict observed regional
features (e.g. the NAO, ENSO, the Hadley Cell, atmospheric jets), it is
believed that the GCMs may be useful for predicting large scale features.

Global climate models tend to have a coarse spatial resolution (Figure
1.5), and are unable to represent aspects with spatial scales smaller than
the grid box size. The global climate models are also unable to account for
substantial variations in the climate statistics within a small region, such as
the temperature differences within the Oslo region (Figure 1.6). In principle
downscaling could be applied to more general settings, such as for instance
relating the local wind speed to the sea level pressure (SLP) between two
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Figure 1.5: An example of land-sea mask of a general circulation model (GCM)
with ∼ 2◦ × 2◦ spatial resolution (T42). Notice that Italy and Denmark are not
represented in the model.

points2.
The downscaling stage may introduce additional errors, despite a general

added value, but systematic model biases may also severely degrade the
downscaling performance. Table 1.1 gives a brief list of typical shortcomings
associated with various models and analyses used in climate research.

1.3.2 Notations

In part of the scientific literature, the process of inferring information about
the small-scale, given the large-scale conditions by the means of a statistical
model, is referred to as ’statistical downscaling’ and in some publications as
’empirical downscaling’, with identical meaning.

2 If all on the same line as the point where the measurement is made, then the SLP

difference represents the large-scale geostrophic wind while the local wind measurement

the local scale wind.
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Figure 1.6: Histograms of daily February–March minimum temperatures (TAN)
for a number of locations around Oslo, Norway, all within a radius of 30km of
each other.

In both cases statistical methods are being employed, and these models
are calibrated on historical measurements (observations), or empirical data.
Thus in order to capture both these aspects, the term ’empirical-statistical
downscaling’ would be appropriate. Hence, the terms ’empirical downscal-
ing’, ’statistical downscaling’ and ’empirical-statistical downscaling’ can be
regarded as synonyms, and we will use the latter expression in this text,
but will henceforth use the abbreviation ’ESD’ to mean ’empirical-statistical
downscaling’.

Henceforth, we will use ’empirical data’ as a synonym for ’historical data’
or ’measurements’. Different choice of these terms will only reflect on the
readability of the text, but all will have the same meaning.

We will use the term ’calibration interval’ or ’calibration period’ when
referring to the batch of data used for training the statistical model. This
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will generally refer to a time interval for the past when data are available for
both predictand and predictor. On the basis of these data, different weights
are applied to the different series in the predictor in order to obtain the best
fit, also referred to as the ’optimal fit’.

Different criteria, such as maximizing the correlation or minimizing the
root-mean-square-error (RMSE), are used in different optimalisation meth-
ods discussed in the next chapters.

The term ’scenario period’ will in general refer to the future, and means
a part of predictor data which have not been used in calibrating the statis-
tical models. Thus, this term is used for out-of-batch, or independent data,
whereas the calibration data are dependent data.

One important concept in geophysics is the ’mode’. Modes refer to pro-
nounced recurring spatial patterns in nature, but also have mathematical
property that one mode has a very different character to an other. Usually,
the modes are said to be orthogonal, which means that they are uncorrelated,
independent, or represent different dimensions.

One may draw analogy from physics, normal modes, and resonance3 in
which certain harmonics are present and others not, just because the res-
onance means that only a whole number wave lengths may fit within the
system. We will come back to modes when discussing EOFs in the next
chapters.

1.3.3 Definitions

For practical purposes and for the benefit of readers with a different back-
ground than geo-sciences, it is useful to make a number of definitions:

Definition: series

A series is defined as a sequence of values, or record of measurements, ar-
ranged according to some order, thus implying several measurements. The
measurements do not have to follow a regular structure.

A special case is the time series containing a number of different values
ordered chronologically. We will also make reference to ’station series’, which
implies a time series of some quantity (e.g. temperature) measured at a

3http://en.wikipedia.org/wiki/Normal mode
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weather/climate station4. In the clim.pact-package, there is a ’class’5 of
objects called ’station’ object, and a number of functions which know how
to handle these. There are functions to retrieve some sample station series
(data(oslo.t2m), plotStation(oslo.t2m)). The mathematical notation
for a series is often [x1, x2, ...].

Definition: vector

A vector is a mathematical term used to represent a series, and is represented
by the symbol ~x. A vector holds several values. The individual values stored
within a vector can be referred to by using an index, and xi is the i-th value
of ~x. The vector is characterised by the number of values it contains, or
the vector length n. In the R environment, a vector is constructed using the
command ’x <- c()’, and the i-th value of ~x can be extracted by the call
’x[i]’. We will use both the notation ~x and xi in the discussion of vector
quantities and series.

In the following, we should be careful to distinguish the different mean-
ings of ’dimension’. One common meaning is the number of different phys-
ical or mathematical dimensions a vector can represent. For instance ’x <-

c(x,y,z)’ can be used to represent a point in a 3-dimensional room, and ’x
<- c(x,y)’ on a 2-dimensional surface. Thus, the physical dimensions are
determined by the vector length.

In the R environment, however, the concept of dimension is often used to
describe the structure of the vector or a data object. The command used
to define the dimension is dim(X). Whereas a vector has one dimension (e.g.
’x[i]’), it is possible to store data as tables with two or more dimensions
(e.g. ’X[i,j]’, ’X[i,j,k]’, or ’X[i,j,k,l]’). Thus, the second meaning
of ’dimension’ tells us how many indices we need to extract any data point
stored in the data object.

4 A climate station is an instrument measuring a climate parameter fixed at one loca-

tion.
5 A label which tells R how to handle the data/object. The data may be stored as a

structure with different types of data.
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Definition: matrix

A matrix (plural: matrices) is a mathematical (Linear Algebra) construction
similar to the vector, but differs by having two dimensions (a vector has only
one dimension). Henceforth, matrices will be represented by capital letters,
X, and individual values may be extracted by using two indices, e.g. i, j.
The i-th/j-th value of X is Xij.

It is possible in R to rearrange 3-dimensional data objects describing two
spatial dimensions (x and y) and one spatial dimension (t), so that the first
index describes all the spatial dimensions and the other the time dimension.
This means that a data object with different indices pointing to different
locations on a surface (x and y) as well as different times t may be treated
as a matrix with only two indices (r(x, y) and t).

Definition: field

A field is used henceforth to refer a parameter which are measured simulta-
neously at different locations, and over a period of time. Often, the quantity
is gridded, which means that the values are presented with a systematic and
regular spatial structure, typically on a mesh.

A field can be thought of as a stack of maps, one for each observation time
(i.e. every day or every month). It is difficult to visualise all the information
embodied in a field in a static 2D graphics, but it may be possible through
animations and multi-media devices. It is also possible to show one instant,
such as the map for a given time, or to show maps of summary statistics.
Figure 1.2 shows one example of how to present a field graphically, presenting
the correlation between the SLP and the NAO index.

Each data point (or grid box) is characterised by its coordinates and by
corresponding index. The way to represent a field mathematically is through
a matrix X. The clim.pact-package provides a ’field’ class for objects rep-
resenting fields, and a bundle of functions which can handle these. The R-call
data(DNMI.slp) retrieves a SLP field (Benestad, 2000), and map(meanField

(DNMI.slp),sym=FALSE) plots the mean field x.

Definition: total value

The total value is defined as the value given in a conventional scale. The
total value is related to the absolute temperature, which is the temperature
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scale in degrees Kelvin rather than Celsius, but we will in this context refer
to any measurement provided in a conventional unit and with conventional
reference points (eg 0◦C) as ’total value’, and the purpose of this definition
is to distinguish from other ways of presenting a measurement, such as the
’anomaly’ and ’mean value’.

Definition: mean

The mean (also referred to as the ’first moment’) is defined as the sum of
a batch of values divided by the size of the batch (n). Mathematically, the
mean can be estimated using the expression: x = 1

n

∑n

i xi.
In geo-sciences, the mean may be over several measurements in time (tem-

poral mean) of over a region (spatial mean). We will henceforth use the
notation x to represent the spatial mean of any variable x, and 〈x〉 to repre-
sent the spatial mean. For variables with many dimensions, including both
spatial and temporal, we can write the total mean as the spatial mean of the
temporal mean 〈x〉.

Often the mean is used to estimate ’monthly values’. For instance, the
January mean for one particular year is the mean of all the measurements
made in that month (measurements may be the daily mean temperature and
the mean is taken from January 1st to January 31st). Note, for precipitation,
the monthly value often is the accumulated value for the whole month (xtot =
∑n

i xi,also referred to as the ’total’), which is the sum of all the (24-hour)
precipitation measurements

A different and a more mathematically rigorous/theoretical way to estimate the mean

is through the location parameter for the probability density function (PDF). In the

more theoretical approach, the location parameter is represented by µ rather than x.

If f(x) is the PDF for x, then the mean can be expressed as µ =
∫

∞

−∞
xf(x)dx.

Definition: climatology

The climatology is normally defined as the average value of a meteorolog-
ical/climate variable for a given time of year. Thus, the climatology for
the surface temperature in the high-to-middle latitude northern hemisphere
varies from being maximum in summer and minimum in winter. The clima-
tology is also often referred to as the ’normal’. Henceforth, is for a variable
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x written as xc.
The climatology differs from the mean value x as the latter does not

describe the seasonal variation in x, and it can be estimated through two
different strategies: 1. by taking the mean value over all days representing
the same time of the year (e.g. the mean over all the January monthly
mean values); 2. by applying a least-squares fit (regression) of a number of
harmonics (sinus and cosine series) to the total values.

Definition: anomaly

The anomaly is defined as deviation from the climatology. The mathematical
definition of the anomaly of x is x′ = x − xc. In clim.pact there are two
functions which estimate the anomalies for either a station series of a gridded
field, anomaly.station() and anomaly.field().

Definition: standard deviation

The standard deviation is a measure of magnitude of the variations be-
tween different values stored in ~x, and can be estimated according to sx =

1
n−1

∑n

i (xi − x)2. The standard deviation is often used for scaling, or stan-
dardising, a series.

A different and a more mathematically rigorous/theoretical way to estimate the stan-

dard deviation is through the scale parameter for the PDF, and the location parameter

is represented by σ rather than sx. If f(x) is the PDF for x, then the standard deviation

can be expressed as σ =
∫

∞

−∞
x2f(x)dx.

The standard deviation is also a measure of the difference between two
series: sx,y = 1

n−1

∑n

i (xi − yi)
2.

Definition: predictor

The predictor is the input data used in statistical models, typically a large-
scale variable describing the circulation regime over a region. The predictor
will be referred to by the mathematical symbol ~x if it represents a single series
(uni-variate), or as X if it contains several parallel series (multi-variate), e.g.
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a field. The predictor is also known as ’independent variable’6, or simply as
the ’input variable’, usually written as the terms on the right hand side of
the equation:

predictand = f(predictors) (1.1)

Definition: predictand

The predictand is the output data, typically the small-scale variable repre-
senting the temperature or rainfall at a weather/climate station. We will
henceforth refer to the predictands as the quantity predicted by the math-
ematical symbol ~y. The predictand is also known as ’dependent variable’7,
’response variable’, ’responding variable’, ’regressand’, or simply as the ’out-
put variable’, usually the terms on the left hand side of the equation.

~y = f(~x) (1.2)

In the equation above, ~y represents the predictand whereas ~x is the pre-
dictor. Figure 1.7 provides a schematic illustration equation 1.2, showing the
relationship between the predictand and the predictor.

6http://en.wikipedia.org/wiki/Independent variable
7http://en.wikipedia.org/wiki/dependent variable
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Model outputinput

predictor predictand

calibration

Figure 1.7: Schematic illustration showing the relationship between predictor and
predictand. Both are required for the calibration/training of the statistical model.
The model in turn is able to calculate the predictand (output), given the predictor
(input).

Predictors and Predictands

Linear downscaling assumes that local observations may be related to large scale circu-

lation patterns though a simple linear statistical relationship, such as ~y = M~x (Zorita

and von Storch, 1997; von Storch et al., 1993b), ~y = MX (e.g. multiple regression) or

Y = MX (e.g. multivariate regression). In this case, the predictands and predictors

contain several observations and are represented by vectors or matrices.

In the case of multivariate predictand, we will use the matrix Y to refer to the time

series of ~y(t), where the vectors are given as the columns of Y . The two data fields Y

and X contain data which are sampled at p and q locations respectively, and over a

time period with n measurements at each location:

Y = [~y1, ~y2, ..~yn],

X = [~x1, ~x2, ..~xn]. (1.3)

At time t, the data fields can be written as ~yt = [yt1, yt2, ..ytp]
T . There are several

techniques to find coupled patterns in climate data (Bretherton et al., 1992), such as

regression, CCA, and SVD methods.

ESD may involve one or more climate indices as predictors. When only one index

variable is used as predictor, then this is referred to as ’uni-variate’ whereas when

several parallel indices are used it is referred to as ’multi-variate’ analysis.



V
er
si
o
n
0
-9

1.3. CONCEPTS AND DEFINITIONS 29

Standard definitions in statistics

The test statistics is a parameter or quantity that in one way describes or
represents the observations which we want to study.

The null hypothesis, H0, constitutes a particular logical frame of refer-
ence against which to judge the observed test statistics. For example, a H0

may be: “It rains the same amount in Bergen during September as in Oslo”,
“The global mean temperature is not influenced by the sunspots”, or “There
is no trend in the September temperature in Bergen”.

The alternative hypothesis, HA, is often “H0 is not true”, but in some
complex cases, there may be more than two outcomes.

The null distribution is the sampling distribution of the test statistics
given that the null hypothesis is true. This gives the range of values for the
outcome of a test/analysis that is likely if H0 is true. It is essential that we
know the null hypothesis implied by the various methods. It is often a good
idea to start the analysis with explicitly stating H0, so that we know what
we are looking for.

There are no definite answers in statistical analysis, but it is possible
to make an estimate of the probability of data being consistent with a null
hypothesis by comparing the data with the null distribution. Therefore,
there is always a risk that an incorrect inference is made, as occasionally
the improbable solution is the correct one. (For instance, it is improbable
to find life in the universe, but despite the low probabilities, it’s the correct
explanation for planet Earth).

We can refer to incorrect inference as errors, and thus classify them as
following: Type I (probability: α) errors denote the false rejection of H0, and
II (probability: β) errors occur when H0 is rejected when it is in reality true.

1.3.4 Anomalies in ESD

It is common to focus on anomalies in ESD work, and one common approach
is to infer the anomalies, but combine these with the empirical climatology
only in the final presentation of the results. It may be possible to by-pass
systematic errors in the climate model (e.g. associated with representing the
seasonal variations) by removing the climatology from the model results as
well as the observations. In this context, there may be different types of
’systematic errors’.
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One should take notice when climate models do not give an accurate
representation of the annual cycle, as this is a sign that the model does not
predict a correct response to well-understood cyclic variations in the external
forcings (solar angle).

On the other hand, the local climatology is often determined by local
physiography (local physical environment, or physical geography) unresolved
by the climate models (Christensen et al., 2007; Houghton et al., 2001).
An ESD based on anomalies combined with the empirical climatology will
nevertheless produce a more realistic picture of the local climate, although
in this case, attention should be on improving the global climate model (or
using a different one). Moreover, a completely wrong seasonal cycle may
suggest that the model is not suitable for downscaling over the given region,
whereas a constant bias (e.g. due to differences in elevation) is to be expected
and will be corrected for through the ESD.

1.4 Further reading

• literature cited in this chapter.

• Linear algebra, matrices: Strang (1988), Wilks (1995), Press et al.
(1989).

• Houghton et al. (2001)8 and Christensen et al. (2007)9.

8http://grida.no/climate/ipcc tar/index.htm
9http://ipcc-wg1.ucar.edu/wg1/wg1-report.html
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1.5 Examples

• One example of a series is ~x = [1, 2, 3, 4] In R, this is written as
x=c(1,2,3,4).

Figure 1.8: A barometer showing the air pressure reading near sea level.

• The total value for the air pressure in Figure 1.8 is 764 mm/mercury
(this unit because the barometer is old, but a scaling factor of 1.333224
yields 1018.6 hPa10). likewise the total value for the temperature read-
ing in Figure 1.3 is 14◦C, which is the same as 273 + 14 = 287 degrees
Kelvin (absolute temperature, not to be confused with the total value).

10http://www.paroscientific.com/convtable.htm
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Figure 1.9: Upper panel: Total value (daily mean temperature, TAM) in black, the
climatology in red, and mean value in blue. Lower panel: the temperature anomaly
in black (the difference between the black and the red curve in the upper panel),
and the difference deviation from the mean value.
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• The mean of the sequence ~x = [1, 2, 3, 4] with the length n = 4 is
x = 1

n

∑n

i xi = (1 + 2 + 3 + 4)/4 = 10/4 = 2.5. In Figure 1.9 the mean
of daily mean air temperature (TAM) is shown as a blue horizontal
line.

• The climatology of the TAM for Oslo-Blindern is shown as a red curve
in the upper panel of Figure 1.9.

• The anomaly is shown as the black symbols in the lower panel of Figure
1.9, and the deviations from the mean is shown in blue. Below is an
example in R for finding the anomalies of a station object (here, one of
the sample station series included in clim.pact):

> library(clim.pact)

> data(oslo.t2m)

> a <- anomaly.station(oslo.t2m)

> print(a)

> plotStation(oslo.t2m)

(whenever we list lines of a computer script, we show the prompt ’>’
before the actual command. The user should not write the prompt,
unless stated otherwise - the R-environment generates these).
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1.6 Exercises

1. Explain the difference between the predictand and predictor.

2. Discuss the most important reason for carrying out ESD.

3. What is meant by ’climatology’?

4. Discuss the general aspects of two different ways of estimating the
climatology for a station series.

5. Explain what is meant by a ’null hypothesis’. Use data(oslo.t2m)

and data(bergen.t2m); how would you determine if these really are
different? Use the call t.test() to compare the January temperatures.

6. How would you model a steady increase in the temperature (simple
trend analysis)?

7. Retrieve station series for Oslo, Bergen, Helsinki, Stockholm, and Copen-
hagen and use a simple linear regression (lm) to estimate the linear
trends. Plot the results.

8. Plot the anomalies of the temperature in Oslo. Then plot the clima-
tology.

* Discuss why there may be problematic to downscale a large-scale field
which does not vary smoothly spatially.
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Downscaling strategies

Figure 2.1: There are examples in nature where the properties or character does
not vary smoothly in space. One example includes minerals, crystals, etc.

2.1 Different approaches

There are two main approaches to downscaling: dynamical and empirical-
statistical. The former involves nested modelling (dynamical downscaling),

35
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which involves limited area models with progressively higher spatial resolu-
tion that can account for more of the geographical features than the GCM.
The latter approach entails the extraction of information about statistical
relationships between the large-scale climate and the local climate.

2.1.1 Dynamical downscaling

Dynamical downscaling is also referred to as ’numerical downscaling’ or
’nested modelling’. The dynamical downscaling approach provides an al-
ternative to the statistical downscaling, but without assuming that historical
relationships between large scale circulation and local climate remain con-
stant.

In theory, these nested dynamical models are physically consistent rep-
resentation of a small region of the atmosphere, and it is indeed remarkable
that the dynamical climate models reproduce the main features of the climate
as realistically as they do, considering that they are based on merely funda-
mental physical laws. One demonstration of RCMs’ merit is that they have
been applied skillfully to different regions around the world. However, the
dynamical models are not perfect and there are some drawbacks associated
with dynamical downscale models, such as:

(i) The dynamical downscaling models are tuned for the present cli-
mate. Cloud schemes are parameterised and based on empirical relation-
ships (Bengtsson, 1996; Heyen et al., 1996), and the parameterisation of
cloud radiation is notoriously difficult to implement in climate and weather
forecast models (Palmer, 1996). Furthermore, we do not know if these pa-
rameterisation schemes will be valid in a global warming scenario even if
they were appropriate for the present climate (same problem as stationarity
in ESD, discussed below). This issue also concerns the global GCMs, whose
results are used as predictors for all the downscaling models.

(ii) The dynamical downscaling models are to date extremely expensive
to run, and only a few integrations can be afforded. This inhibits the use of
dynamical models for long integrations and extensive hypothesis testing.

(iii) Upscaling instabilities (Palmer, 1996; Lorenz, 1967, 1963) are filtered
out: these may not be important in operational weather forecast integra-
tions, which are integrated over a shorter period, but upscaling instabilities
can cause inconsistencies in longer integrations between the model boundary
values and the internal dynamics. The SSTs taken from the coupled GCM
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run may also not be appropriate as boundary values in a nested model if
these are sensitive to local ocean forcing (like Ekman pumping).

(iv) Schemes to counter numerical instabilities are usually needed due
to the fact that the model consists of discrete values on a discrete grid.
Furthermore, there are no perfect numerical intergation schemes, and results
from dynamical models are subject to round off errors as well as numerical
diffusion and inadequate conservation properties (Palmer, 1996; Press et al.,
1989).

(v) Concerns have also been raised about the effects of lateral boundary
conditions resulting in ill-posed solution (Kao et al., 1998; Mahadevan and
Archer, 1998). Furthermore, a RCM may provide an inconsistent picture if
the lower boundaries (sea surface conditions) are prescribed from a GCM
experiment and coupled air-sea processes are present.

Regional climate models (RCMs) tend to inherit systematic errors from
the driving models (Machenhauer et al., 1998), as dynamic downscaling mod-
els may exaggerate the cyclone activity over the North Atlantic and therefore
give excessive precipitation and warm biases in the northern Europe. Of-
ten the results from RCMs are not representative for the local climate, and
statistical-empirical schemes must be employed to adjust the data in order
to obtain a realistic description of the local temperature or rainfall (Skaugen
et al., 2002b; Engen-Skaugen, 2004).

In most cases, however, one would expect that the shortcomings of the
dynamical and statistical models to produce different errors, and therefore a
combination of the two methods may be particularly useful.

Dynamical downscaling will not be the focus of this text, but will only
be referred to as a means to put ESD into perspective.

2.2 Philosophy behind ESD

In the previous chapter, the essence of downscaling was explained as utilisa-
tion of the link between different scales to say something about the smaller-
scale conditions given a large-scale. The reason for why downscaling is useful
was also discussed. Here we will elaborate on the merits of ESD as well as
discuss some fundamental issues associated with modelling.

ESD can be used to provide a so-called assimilation of the predictions,
which means that the results should have same statistical distribution (or
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probability density function, PDF) as the real data. In mathematics, this
is also referred to as mapping the results of the empirical data so that they
describe the same data space (a mathematical/statistical concept), not to be
confused with producing geographical maps (this will be discussed later). It
is important to keep in mind that the statistical distribution (PDF) for the
predictor will determine the distribution of the downscaled results in ESD.

A common problem is deriving a representation for the local precipitation
amount which is both non-Gaussian and often contains a large fractions of
non-events (no precipitation). The predictor, for instance sea level pressure
(SLP), may on the other hand be characterised by a Gaussian distribution.

One solution to this problem may be to transform the predictand so that
it becomes (approximately) linear (Benestad and Melsom, 2002). It is also
possible to circumvent this issue by utilising non-linear techniques or applying
weather generators. These techniques will be discussed in later chapters.

Figure 2.2: Panoramic morning view of the Rondane mountain range.

In climate change studies, one important question is what implications a
global warming has for the local climate. The local climate can be regarded
as the result of a combination of the local geography (physiography) and the
large-scale climate (circulation). Until now, global climate models (GCMs)
have not been able to answer this question since their spatial resolution is
too coarse to give a realistic description of the local climate in most loca-
tions. Furthermore, local effects from valleys, mountains, lakes, etc are not
sufficiently taken into account to give a representative description (Figure
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2.2 provides an example of local effects, where fog forms over a lake on the
lower plateau). It may nevertheless be possible to derive information for a
local climate through the means of downscaling.

The local climate is a function of the large-scale situation X, local effects
l, and global characteristics G, described mathematically as:

y = f(X, l,G). (2.1)

This formula will be a central framework for ESD and is inspired by von
Storch et al. (2000). Here X is regional effects that not directly influenced
by G. Although it is expected that variations in the global mean will imply
changes in thee regional climate, it is not necessarily guaranteed that a change
in X will follow that of G systematically.

2.2.1 Considerations

It is important that there is a strong underlying physical mechanism that
links the large and small scale climate, as the lack of a physical basis cannot
preclude the possibility of weak or coincidental correlations. Linear empirical
downscaling provide approximate description of the relationships between the
spatial scales.

Furthermore, empirical downscaling facilitates a “correction” to the sim-
ulations, so that the observations and the downscaled simulations can be
regarded as directly comparable.

A nice feature of empirical downscaling is that this method is fast and
computationally “cheap”. The drawback of empirical downscaling is that the
locations and elements are limited to those of historical observations.

Advantages

(i) ESD is cheap to run, which means that we can apply these statistical
models to results from a number of different global coupled GCMs. We can
therefore get an idea of the uncertainties associated with the GCMs.
(ii) ESD can be tailored for specific use, and the statistical models can be
optimised for the prediction of certain parameters at specified locations, as for
instance specified by customers. This makes the statistical model approach
ideal for end users.



V
er
si
o
n
0
-9

40 CHAPTER 2. DOWNSCALING STRATEGIES

(iii) Dynamical downscaling models still have a low spatial resolution for
some impact studies, and one may still have to apply some kind of downscal-
ing/MOS technique to the dynamical model results.
(iv) The statistical models can be used to find coupled patterns between two
different climatic parameters, and hence provide a basis for analysing both
historical data as well as the results from dynamical downscaling. An al-
ternative approach to improve our physical understanding is to run model
experiments with GCMs or nested models, however, this kind of numerical
experiments requires substantial computer resources and is expensive.

Assumptions

Regarding the predictors, Hellström et al. (2001) argued that: ’(1) they
should be skillful in representing large-scale variability that is simulated by
the GCMs; (2) they should be statistically significant contributors to the
variability in predictand, or they should represent important physical pro-
cesses in the context of the enhanced greenhouse effect; and (3) they should
not be strongly correlated to each other’.

The latter point here can sometimes be relaxed if methods used do not
rely on the predictors being uncorrelated, and principal component analysis
(PCA; see the discussion on EOFs in the next chapters) can remould the
data so that the input to the ESD is orthogonal.

Nevertheless, if two input variables are correlated with the predictand
during the calibration period, and only one responds to a climate change,
then it is likely that the ESD will fail to provide a good indicator about a cli-
mate change. It is therefore important to have a good physical understanding
about which predictors have a physical connection to the local variable, and
it is important to limit the set of predictors to only those which are relevant.

This idea is discussed in von Storch et al. (2000), who list a number of
criteria which must be fulfilled for ESD: ’(1) The predictors are variables of
relevance and are realistically modeled by the GCM; (2) The transfer function
is valid also under altered climatic conditions. This is an assumption that in
principle cannot be proven in advance. The observational record should cover
a wide range of variations in the past; ideally, all expected future realizations
of the predictors should be contained in the observational record; (3) The
predictors employed fully represent the climate change signal.’



V
er
si
o
n
0
-9

2.2. PHILOSOPHY BEHIND ESD 41

Here we will summarise these criteria into four necessary conditions which
must be fulfilled in ESD:

a Strong relationship

b Model representation

c Description of change

d Stationarity

If any of these conditions are not fulfilled, then the ESD may be flawed
and pointless. We will discuss each of these in more detail below.

Strong relationship

The basis of ESD is the assumption that there is a close link between the
large-scale predictor and the small-scale predictand, thus a strong relation-
ship. It is only when they to a large degree co-vary and have similar time
structure that it is possible to use a predictor to calculate the predictand.

Model representation

ESD takes the predictor as a given, and it is therefore important that the
predictor is simulated well by the models. In other words, if the parameter
taken the predictor is unrealistic, then the ESD results will be wrong too.

Parameters such as geopotential heights, SLP, T(2m) and geopotential
heights tend to be realistically captured by the GCMs (Benestad et al.,
1999; Benestad, 2001a), but the sea surface temperature (SST), which partly
depends on the ocean dynamics, is not well-represented as the spatial res-
olution of the ocean models tends to the too coarse to describe the ocean
currents which are important influences on the SST.

GCMs may also have shortcomings with respect to the description of the
vertical profiles through the boundary layers or representation of humidity
(Benestad, 2004c).

The question of the degree to which the predictor is representable also
depends on time scale. Sometimes the monthly mean gridded values may give
a reasonable description, whereas daily values may be more problematic.
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It is not only the model results which is the issue here, but the gridded
observations used for calibrating the models too. Large uncertainties in the
gridded observations introduce difficulties in terms of model evaluations as
well as in the matching of simulated traits to observed ones, thus leading to a
weak relationship. Furthermore, errors in the gridded observations hampers
skillful calibration of the statistical models.

Description of change

It is important that the predictor parameter responds to given perturba-
tions in a similar as the predictand, or the ESD results will not capture the
changes. This can also be seen from the simple mathematical expression
describing an ideal situation: ~y = F (X). If this equation truly is represen-
tative, the equality implies that y and F (X) respond the same way. For a
linear model, the function can be approximated by F (X) ≈ bX, and the
equation can be written as y = bX. Now, the function F (.) → b is taken as
being stationary (doesn’t change over time or value of X), meaning that y
must change proportionally with X.
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One example of ESD is the use of a circulation index such as the SLP to model the

local change in T(2m). According to the first law of thermodynamics, any change in

temperature dT/dt can be tied up to an energy input or loss (Q) and a change in the

work applied: cdT/dt = Q + pdV/dt (Zemansky and Dittman, 1981). This expres-

sion assumes a Langrangian reference frame, which can be expanded to the following

equation of a fixed point (Eulerian reference).

Hence from the first law of thermodynamics, it is evident that the changes in temper-

ature (dT/dt) is only partially described in terms of the pressure (p). The first law of

thermodynamics can be expressed as:

∂T

∂t
+
∂T

∂x

∂x

∂t
+
∂T

∂y

∂y

∂t
=
Q+ pdV/dt

c
(2.2)

Here, ∂x
∂t is physically the same as the air velocity along the x-direction and ∂y

∂t represent

the motion along the y-direction. A mathematical shorthand for ∂T
∂x

∂x
∂t + ∂T

∂y
∂y
∂t is ~v ·∇T .

Here the velocity ~v should not be confused with the volume V , although the change in

volume is related to the velocity field as the change of volume is the divergence of the

flow: dV/dt = ∇ · ~v. After some re-arrangement, equation 2.2 can be re-written as:

∂T

∂t
= −~v · ∇T +

Q+ p∇ · ~v
c

(2.3)

We can take this even further by assuming that the air flow is in geostrophic balance

(Gill, 1982). We use the notation ~vg to indicate that we are referring to the geostrophic

flow.

ug = − 1

fρ

∂p

∂y
; vg =

1

fρ

∂p

∂y
(2.4)

The geostrophic wind can be expressed using a mathematical shorthand called the curl

∇× p: ~vg = − 1
fρ∇× p, and our original expression can be written entirely in terms of

the pressure, spatial temperature gradient, and heat flux Q:

∂T

∂t g
= (

1

fρ
∇× p) · ∇T +

Q− p∇ · ( 1
fρ∇× p)

c
(2.5)

Equation 2.5 shows why the SLP (p) is not a good predictor choice for the tempera-

ture, as this excludes the effect of Q/(fρ) (e.g. radiative imbalance due to increased

downwelling long-wave radiation, increased evaporation, or transport of latent heat

through increased moisture) as well as the temperature advection due to changes in the

large-scale temperature structure (spatial temperature gradient).
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Another common case is the use of SLP to represent the ciculation regime
and then to downscale precipitation P . In this case, we can use continuity
equation for the atmospheric moisture ρw as a guide line, assuming that the
evaporation is a function of temperature E(T ) describing a ’source’ term and
the precipitation is a ’sink’ term: dρw/dt +~v · ∇ρw = E(T )−P (see the box
above for the mathematical notations). The air flow ~v can be related to the
pressure, as done in the box, but now one important component to the flow
is the vertical ascent associated with convection, cyclones, or frontal systems.

Nevertheless, the important message is that theoretical considerations
suggest that a predictor including only the pressure can merely describe part
of the precipitation, since it implicitly assumes that ρw is constant.

Since the GCMs tend to provide a good description of the SLP, but SLP
doesn’t contain the ’global warming signal’, one may consider using it in
combination with the global mean temperature to describe the variations in
local conditions as well as the influence from a global warming (Hanssen-
Bauer and Førland, 2000; van Oldenborgh, 2006).

Stationarity

The fourth important aspect to ESD is the issue of stationarity (Wilby, 1997).
By this we mean that the statistical relationship between the predictor and
the predictand does not change over time. In equation 2.6, the requirement
is that l, which describes the effect of the local landscape/geopgraphy, is
constant. In other words, stationarity implies that the local landscape doesn’t
change.

Examples of landscape changes that may render the relationship between
large and small scales non-stationary include de-forestation, ascending tree
line, encroaching urbanisation, plowing up new fields for agriculture and
introduction of irrigation, construction of dams to make nearby reservoirs,
or a weather/climate station relocation.

Vegetation may change or snow may melt as a result of a climate change,
and may hence indirectly affect the local climate. For instance, a global
warming may result in a higher tree line.

To some degree, the complex coupling between the local climate and the
vegetation may be captured by the empirical models if the future scenario
follows a pattern seen in the past, but this cannot be guaranteed. Thus,
there may be several reasons why l is not a constant.
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The other aspect of non-stationarity in the expression y = f(X, l, R)
is whether the function G varies for some other reason. Here we use l to
represent local effects, and changes to G would entail a more global scale,
but the reason for this kind of change is more unclear.

One interpretation of G is the effects on the local climate from a global
change, not captured by GCMs due to shortcomings or biases, whereas X
represents the predicted regional response.

Some examples may be that a climate change changes the ocean circula-
tion (e.g. the global mean temperature, the ’thermohaline circulation’ or the
’global conveyor belt’), tele-connections, non-linearities, changes caused by
changes in the planetary-scale poleward heat, vorticity and mass transport
(e.g. changes to the Hadley Cell and the polar ice-cover), and other forcings
such as solar and volcanic eruptions.

If the contributions from l and G are constant, then we can re-write
equation 2.6 as:

y = f ′(X), (2.6)

where f ′(.) is a function that represents the effects of l and G in f(.). This
is the equation discussed by von Storch et al. (2000) and this is the form
that will be used henceforth in this text. Thus ESD discussed henceforth
only considers the relationship between the predictand y and the regional
predictor X. The objective of the remainder of the compendium is to discuss
various techniques to derive f ′(.).

Huth (2004) found that when using only SLP or 1000-hPa heights as
the only predictor, ESD tends to lead to unrealistically low temperature
change estimate. Benestad et al. (2007), however, argued that the large-
scale precipitation from gridded re-analysis products and GCMs serve as a
reasonably skillful predictor for the local rainfall.

2.2.2 A physics-inspired view

Part of the discussion in section 2.2 was inspired by physics and the fact
that the left hand side of an equation is by definition equal to the right hand
side. The examples above were based on the first law of thermodynamics,
the continuity equation, or a geostrophic balance. For such cases, a linear
model can in principle be employed to represent the relationship between all
the terms on the left hand side on the one hand, and all the terms on the
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Figure 2.3: The notion that all processes ultimately are governed by physical laws
should inspire the thinking about which conditions that are important for the pre-
diction of the resulting phenomena.

right hand side on the other, given a well-defined physical condition. These
should have the same physical units if the equation is to represent a physical
law.

However, when relating small scale phenomena to large-scale conditions,
there may not be a strict one-to-one relationship. The small-scale may fol-
low the large-scale conditions to some degree, but also exhibit a behaviour
independent of the large-scale situation. The independent behaviour will not
be captured by the predictor, and will henceforth be referred to as noise.

The part of the local variability related to the large-scale, may have dif-
ferent amplitude for different locations, and thus each location may have a
systematic relationship with the large scale. It is this systematic pattern that
is utilised in ESD.

In several studies, predictors have been chosen so as to capture the most
important physical aspects related to the local climate variable. Chen et al.
(2005) and Hellström et al. (2001), for instance, used the two geostrophical
wind components, total vorticity, and the large-scale humidity at 850 hPa
height as predictors. The former two can be associated with advection pro-
cesses, the total vorticity can give an indication of the ascent of the air, and
the latter describes the amount of water available for precipitation.

One way to implement the physics-inspired ESD can be to use large-scale
gridded data to predict the local variable of the same parameter.
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For instance, using the large-scale gridded T(2m) analysis to predict the
local 2-metre temperature measured at a given location more or less fulfils the
criteria of non-stationarity and containing the essential signal. One drawback
may be a weak relationship between precipitation on local and the large
scales, but this shortcoming tends to be common for all predictors when the
predictand is precipitation (Benestad et al., 2007).

There is a sound physical reason behind the wintertime SLP pattern
and precipitation for most locations in Norway, as it is well-known that a
combination of advection of moist maritime air and orographic lifting creates
favourable conditions (Hanssen-Bauer and Førland, 2000).

2.2.3 A purely statistical view

ESD can be used to model indirect relationships, where it is difficult to
find one direct physical process (Christensen et al., 2007). There must
nevertheless be a real influence of the predictor on the predictand for the
ESD to make sense. For instance, the temperature over a larger region can
be used to model the flowering date of some flower (Bergant et al., 2002).

2.3 What is ’skillful scale’?

One of the earliest discussion of the issue of skillful scale can be traced to
Grotch and MacCracken (1991), who compared climate sensitivity of several
GCMs on a number of different spatial scales. They stated:

Although agreement of the [global] average is a necessary condi-
tion for model validation, even when averages agree perfectly, in
practice, very large regional or pointwise differences can, and do,
exist.

Grotch and MacCracken (1991) found that individual point differences in
temperature can exceed 20K.When they examined successively smaller areas,
the spread between the models became more and more apparent generally.
The agreements tend to be better in winter and for zonal averages than in
summer and for sub-continental scales.
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Figure 2.4: Local properties, such as tree specie, may dictate the local character
(here colour).

Grotch and MacCracken (1991) also concluded that the quality of the
model simulations of present climate sets one limitation in terms of projecting
a future climate change.

The paper by Grotch and MacCracken (1991) has been re-interpreted by
Zorita and von Storch (1997) as: “at finer spatial resolutions, with scales
of a few grid distances, climate models have much smaller skill”, and by
von Storch et al. (1993b) as: “the minimum scale is defined as the distance
between two neighbouring grid points, whereas the skillful scale is larger than
N gridpoint distances. It is likely that N ≥ 8”. The presence of a skillful
scale was also acknowledged by Huth and Kyselý (2000), who also referred
to the work by Grotch and MacCracken (1991).

From a modelling aspect, one may expect simulations not to be accurate
on the minimum scale due to numerical noise (digitalisation cannot give a
perfect description of a continuous variable, numerical schemes are imperfect,
etc), approximation of unresolved processes, the necessity to describe the
smallest wavelengths, and advection1 associated with these. The concept of
’skillful scale’ applies to both RCMs as well as GCMs.

The work by Grotch and MacCracken (1991) was based on old models
without a complete ocean-atmosphere coupling, involved short non-transient
integrations, with models that included only 2–9 vertical layers, and where

1transport of some quantity, carried with the fluid motion.
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only one GCM included the full diurnal cycle of solar radiation. Since this
study, the climate models have improved.

Hence, the work by Grotch and MacCracken (1991) is due a revision,
and the term ’skillful scale’ seems to have one original source (Grotch and
MacCracken, 1991), but remains elusive, especially with respect to the state-
of-the-art global climate models.

There are different aspects that possibly may affect the skillful scale: (a) the choice

between spectral models (atmospheres only) or grid-point models; (b) the numerical

integration schemes and discretisation; and (c) the surface process parameterisation

schemes. For instance, one type of time integration commonly used in the GCMs is

the leapfrog scheme, but often the numerical solutions from such algorithms contain

spurious oscillations known as ’numerical mode’ (Sat, 2004).

The time integrations may be less relevant for the skillful scale than the techniques

dealing with the spatial gradients and partial differential equations. The spectral models

employ a Fourier Transform Method (Press et al., 1989, p. 704) to compute the gradient

(Poisson equation) rather than finite differencing. The very different nature of these

algorithms is likely to affect aspects such as numerical modes, as well as the consistencies

with parameterisation schemes, radiative models etc.

Few studies have to date explored how the skillful scale depends on these choices. One

obstacle is the difficulty in defining and estimating what the skillful scale is in the first

place.

The implication of ’skillful scale’ is central to ESD. A statistical model
applied to just one model grid box may arguably be considered as a kind of
downscaling if the grid box represents an area rather than a point measure-
ment.

One may on the other hand argue that a downscaling involves going from
a skillful description of the large-scale condition to the small-scale that cannot
skillfully be represented by the model. We will reserve the term ESD for the
latter, and use the term ’adjustment’ or ’assimilation’ for the former.

It is also important to keep in mind the difference between skillful scale
and the optimal domain which will be discussed later on. The former is the
smallest spatial scale for which the GCMs is able to provide an adequate
representation, while the optimal domain refers to the size of the area rep-
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Figure 2.5: Example of distributions of grid-box values from a GCM (interpolated),
an RCM (interpolated) and ESD, as well as corresponding observations. The upper
panels show the PDF for daily mean temperature (left) and 24-hour precipitation
(right), all for the period 1981–2000. Note, the vertical axes for precipitation have
a log-scale.

resented by the large-scale predictor, that is greater than the skillful scale,
yielding the representation with maximum correlation with the predictand.
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The skillful scale may be defined differently depending on what aspect of
skill is required, eg the mean value, the climatology, the variance, or the time
structure (autocorrelation). One criterion may be that the model produces
the same probability distribution (PDF) as the empirical data for the control
period.

Figure 2.5 shows a comparison between PDFs drawn from a GCM, RCM
and ESD and compare these with the actual distribution derived from ob-
servations. It is immediately apparent from the comparison of the PDFs for
the daily mean temperature, that the GCM does not give similar statistics
on the grid-box level.

The RCM with a 50◦ × 50◦ spatial resolution provides an even worse
description of the distribution in this case. However, the RCM and GCM
shown in Figure 2.5 are not directly comparable, as the RCM is driven by
a different (older) model than the GCM (which is from the IPCC fourth
assessment simulations). The main point here is that neither the GCM nor
the RCM provide a good description for the local climate in general (if they
do, it’s accidental).

The ESD results (Figure 2.5) provide a closer description of the PDF,
which is expected since the models are tuned to these data. The compari-
son between predictions of the local 24-hour summer-time precipitation and
measured quantities also reveals discrepancies due to the limitation of skillful
scales.

Distributions do not give any information about the time structure in
the series (e.g. persistence, autocorrelation). The legends in the right hand
panels in figure 2.5 do indicate the fraction of wet days, however, and whereas
the RCM and GCM may give the impression of rain on more than 50% of
the days in winter, less than 30% can be derived from the observations. The
apparent over-estimation of wet days is also the case for the summer season
(lower right panel).

However, the observed value, which in practical terms is a point measure-
ment, is not comparable to the model results which are area averages. It
may for instance rain in a location near the rain gauge, and within the grid
box, but the rain gauge may not record any precipitation. Thus, the models
may in principle be correct even though the comparison between the grid
box values and a single station show different values.

Figure 2.6 gives a picture of how precipitation varies on small spatial
scales compared to a typical grid-box area, and Figure 2.7 shows how the
climatology may differ for nearby stations, even within the distance of the
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Figure 2.6: An example showing the spatial structure of precipitation from radar
reflection and a typical size of an RCM grid box, showing spatial variations at
scalles smaller than the models spatial resolution.

minimum scale.
Is it possible to use observations to evaluate models then, if the models

cannot represent the local scale at which the empirical measurements are
made? The best practice is to aggregate (sum) observations in order to
provide regional mean values, rather than trying to focus on smaller scales.

The model representation of meteorological/climatic parameters is char-
acterised by overly spatially smooth fields/maps, but by aggregating regional
climatic information, it is possible to arrive at corresponding smooth quan-
tities.
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Figure 2.7: Example of distributions of how the climatology may differ at nearby
locations separated by distances smaller than the minimum scale.

2.4 Further reading

Dynamical versus empirical-statistical downscaling

Murphy (1999) argued that dynamical downscaling and ESD show similar
skill, but that ESD was better for summer-time estimates of temperature and
dynamical methods yielded slightly better estimates of winter-time precipi-
tation. He argued that the skill with which the present-day surface climate
anomalies can be derived from athmospheric observations is not improved
using sophisticated calculations of subgrid-scale processes made in climate
models rather than simple empirical relations. Furthermore, it is not guar-
anteed that ESD and dnyamical downscaling may have similar skill for a
future climate change.

Hellström et al. (2001) compared dynamical downscaled and ESD sce-
narios for Sweden. Both RCM and ESD greatly improved the description of
the precipitation annual cycle, compared to the GCM. They found greater
spatial and temporal variability in the ESD compared to the RCM, which
was explained by the large differences seen in summer.

Kidson and Thompson (1998) also found that both ESD and dynamical
downscaling were associated with comparable skill in estimating the daily and
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monthly station anomalies of temperature and rainfall over New Zealand, and
comparisons between dynamical downscaling and ESD for the Nordic region
also suggest comparable skill (Christensen et al., 2007; Houghton et al.,
2001; Hanssen-Bauer et al., 2003; Kaas et al., 1998).

Dynamical downscaling and ESD should support each other (Oshima
et al., 2002). Murphy (2000) have argued that the confidence in estimates of
regional climate change will only be improved by the convergence between
dynamical and statistical predictions or by the emergence of clear evidence
supporting the use of a single preferred method.

Although statistical downscaling may have similar merits as dynamical
downscaling (Christensen et al., 2007; Houghton et al., 2001; Kidson and
Thompson, 1998; Kaas et al., 1998), the different methods have different
strengths and weaknesses. The statistical downscaling method tend to give
a greater geographical spread in the mean temperatures than scenarios using
the predictions from GCM grid boxes (Hulme and Jenkins, 1998) or the
dynamical projections (Räisänen et al., 1999; Rummukainen et al., 1998).

Statistical downscaling, on the other hand, may be insensitive to some of
the systematic biases, if the GCM results are projected onto the “correct”
observed climate patterns. However, the statistical models can also give
misleading results if the modelled spatial patterns projects onto “wrong”
observed patterns.

It is important to realise that the issue of stationarity not only applies to
ESD, but to GCMs and dynamical downscaling as well. The dynamical cli-
mate models all involve different types of sub-grid parameterisation schemes,
which are just statistical models similar to ESD. Parameterisation schemes
tuned for the present-day conditions are guaranteed to be valid in a future
climatic state. Non-stationarity in the parameterisation schemes may indeed
be more serious than in ESD (thus provide a ’slippery slope’), as these cal-
culations are feed back into the model and can have more dramatic effect
through many iterations.

One common misconception is the notion that RCMs provide a physically
consistent description of the regional climate. Although the equations pro-
vide a dynamical solution based on the Navier-Stokes equation, the numerical
methods solving these are often imperfect due to discretisation. Furthermore,
the parameterisation schemes provide approximate bulk formula descriptions
of sub-processes and land surface processes which may not give exact repre-
sentations. There may also be difficulties associated with lateral boundary
conditions (Kao et al., 1998; Mahadevan and Archer, 1998), and schemes to
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inhibit overly strong convection or filter out unphysical wave solutions arti-
ficially constrain the model solutions to a state that is close the real world,
but implies a lack of physical consistency.

In summary, both downscaling approaches have their weaknesses and
strengths, and it is difficult to say which is superior. It is clear that differ-
ent methods are appropriate for different use, and it is therefore important
to apply both dynamical and statistical downscaling to global GHG GCM
results. A comparison between the two fundamentally different techniques
can give us a measure of uncertainty associated with the predictions. If both
methods give similar answers, then we may at least have some confidence in
the results.
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2.5 Examples

2.5.1 Geostrophic balance

An example of inferring one scale from another is to use the equation for
geostrophic balance and pressure measurements from two locations to model
the local wind in a point bisecting the line between the two pressure mea-
surements (here in this example, only one component of the wind will be
estimated - the component perpendicular to the line between the p measure-
ments).

The local wind measurement represents the small-scale (affected by tur-
bulence), whereas the p measurements and the geostrophic frame work rep-
resents the large scale. It is assumed that the local wind is affected by the
large-scale flow between the points.

2.5.2 Basic pre-processing

Much of the work in ESD involves preparing (pre-processing) data so that
the computer code can analyse them. The predictand and the predictors
must be synchronised, so that the same times for the local scale and the
large scales are linked.

Some aspects of the pre-processing is discussed in the next chapters, but
we will go through some of the more basic ideas here. ESD always starts
by retrieving (or reading) in the data to the computer memory. Usually the
data is read from disc, but can also be read over the Internet.

In R there are various ways of reading the data, and the data are rep-
resented in entities referred to as ’objects’ (a bit analogous to variables in
other computer languages, but may have a complex structure).

The clim.pact-package comes with some sample data which can be re-
trieved with the data() command:

> library(clim.pact) # Activate clim.pact

> # Example of reading in a predictand:

> # Retrieve the monthly mean T(2m) for Oslo:

> data(oslo.t2m)

> # Information about this data can be found:

> ? oslo.t2m

> # Retrieve the daily mean T(2m) and precip for Oslo:
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> data(oslo.dm)

> class(oslo.t2m)

> class(oslo.dm)

> summary(oslo.t2m)

> summary(oslo.dm)

The symbol ’#’ is used for commenting in R, and ’?’ gives on-line help
information on functions and data in the installed packages.

In the above example, the monthly mean T(2m) for Oslo is first read into
memory, and then a query is made about the data. The following line reads
daily mean temperature and precipitation for Oslo. Note the suffix ’.dm’
denotes ’daily mean’ in clim.pact.

The command class() shows what type of object the two examples here
are, and this information is used by the functions to decide how to treat the
objects. The last two lines in this example employ the summary()-command,
which can be used to see the contents of the objects.

Note, the daily mean station objects look different to the monthly objects,
as the former holds two parameters (typically ’t2m’ and ’precip’) while the
latter is designed to hold one parameter (’val’ for ’value’).

The data()-command can only be used to retrieve data already incorpo-
rated in the installed packages. In clim.pact, there are also other functions
to read in data:

> library(clim.pact) # Activate clim.pact

> obs1 <- getnordklim("oslo") # Read data from the Nordklim project

> #(http://www.smhi.se/hfa_coord/nordklim/)

> obs2 <- getnacd("oslo") # Read data from the NACD project

> obs3 <- getnarp("Tromsoe") # Read data from the NARP project

> obs4 <- getgiss() # Read data from GISS.

> obs5 <- getecsn() # Read data from the ECSN project.

> # Check the results for obs1

> plotStation(obs1)

All these calls returns a monthly station object that clim.pact knows how to
deal with. For instance, the clim.pact-function plotStation() is designed
to make a graphical presentation of these objects.

The getnordklim and getnacd calls require that the data are already
installed on the computer in the NACD format (Frich et al., 1996).

It is also possible to read the data as an ordinary table from a text file,
and then create a station object:
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> library(clim.pact)

># Read in the Monthly England & Wales precipitation (mm) over

the Internet.

> a <- read.table("http://www.metoffice.gov.uk/research/hadleycentre

/CR_data/Monthly/HadEWP_act.txt",skip=3,header=TRUE)

> class(a)

> # Data preparation: store the acual measurements in a matrix

called ’X’

> X <- cbind(a$JAN,a$FEB,a$MAR,a$APR,a$MAY,a$JUN,a$JUL,a$AUG,a$SEP,

a$OCT,a$NOV,a$DEC)

> # Inspect the results:

> class(X)

> dim(X)

> # Transform the data to a ’station object’

> precip <- station.obj(x=X,yy=a$YEAR,obs.name="Monthly England & Wales

precipitation",unit="mm"ele=601)

> # The pre-processing is complete - now check the results!

> plotStation(precip)

> ? station.obj

Although the Monthly England and Wales precipitation is strictly not a
station record, we can treat it as if it were in the analysis here.
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2.6 Exercises

1. Which four conditions need to be fulfilled for ESD? Why are these
important?

2. What are the two main approaches for downscaling? How do they
differ?

3. List the caveats of ESD.

4. What kinds of shortcomings may be a problem for dynamical down-
scaling?

5. Why is it important to apply both ESD and dynamical downscaling?

6. What is meant by ’skillful scale’? How does this differ from ’minimum
scale’?

7. Start R and install clim.pact. In the Windows version, the installa-
tion of packages is easy (tools on top bar). In Linux, you will have
to download the clim.pact-package from CRAN, set a system vari-
able R LIBS (create a local directory, and set R LIBS to this location),
and run a command in a Linux shell: ’# R CMD INSTALL clim.pact

clim.pact 2.2-5.tar.gz. The installation depends on the ncdf and
akima (available from CRAN), so these must be installed prior to
clim.pact. Do the examples above. (Some of the calls may not work,
e.g. getnordklim, getnacd, getgiss, getecsn.)

8. Read a data series (own or over the Internet). Use the example above,
and make your own station object. Use plotStation to make a graphical
visualisation.
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Chapter 3

Predictors and pre-processing

Figure 3.1: Past traditions and myths have given rowan berries the dubious ability
to predict the subsequent winter’s snows.

Several large scale climate variables have been used as predictors of the
statistical models. Due to its strong influences on the local climate (e.g. Chen
and Hellström (1999)), atmospheric circulation is usually the first candidate
of predictors. Among various ways to characterize the circulation, indices
(e.g. Linderson et al. (2004)) and some kind of EOF analysis based on air
pressure and/or geopotential height data are often used (Benestad, 2001a).

61
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In this chapter, we look at different ways to prepare the predictor data
before they can be used as inputs in statistical modelling. We start from
the simples approaches based on ’circulation indices’, and proceed to EOF
analysis for multi-variate variables, and how to apply EOF analysis to reduce
the problem of co-linearity.

3.1 Choosing predictors

Large scale climate variables other than standard climate indices have been
used in ESD. For example, Kaas and Frich (1995) stated that the inclusion of
tropospheric temperature information among the predictors is of fundamental
importance for estimating greenhouse gas induced changes. They thus used
both the 500-1000 hPa thickness and the sea level pressure (SLP) fields as
predictors.

Several potential ”signal-bearing” predictors have been tested for down-
scaling precipitation. Hellström et al. (2001) used large-scale absolute hu-
midity at 850 hPa (q850) as predictor for precipitation, in addition to circu-
lation indices. They conclude that changes in q850 seem to convey much of
the information on precipitation changes projected by ECHAM4.

Linderson et al. (2004) tested several predictors for monthly mean pre-
cipitation and frequency of wet days, including large-scale precipitation, hu-
midity and temperature at 850 hPa, and a thermal stability index. They con-
cluded that large-scale precipitation and relative humidity at 850 hPa were
the most useful predictors in addition to the SLP based circulation indices.
Relative humidity was more important than precipitation for downscaling
frequency of wet days, while large-scale precipitation was more important
for downscaling precipitation.

3.2 Circulation indices

The most used ciculation indices are probably the Southern Oscillation In-
dex (SOI) and related El Niño indices (Philander, 1989), the North Atlantic
Oscillation index (NAOI), and the Arctic Oscillation Index (AOI). Figure 3.2
provide an illustration of the chronological variations in the NAO and Nino3.4
indices (mean SST anomaly over the 5◦S–5◦N/120◦W–170◦W region).
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These give a simple description of the situation over a large region. In
addition, it is possible to use other data, such as the sunspot number, al-
though it is not always clear whether these have a real connection with the
local climate (Benestad, 2002c). A good source for data is the ClimateEx-
plorer (http://climexp.knmi.nl/), however, some climate indices are also
available from the R-package met.no.
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Figure 3.2: The graphics produced by the example: left the NAOI and right the
NINO3.4 index.
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> library(met.no) # Activate clim.pact

> naoi <- NAOI() # Produces some graphics

> enso <- ENSO() # Produces some graphics

> summary(naoi)

> summary(enso)

Some indices may be generated from grid-box values of gridded observa-
tions and GCM results. Chen et al. (2005) and Hellström et al. (2001) used
indices representing the two geostrophical wind components, total vorticity,
and the large-scale humidity at 850 hPa height.

Other examples of ESD based on circulation indices include Kilsby et al.
(1998), who used SLP, total shear vorticity as well as the zonal and merid-
ional components of geostrophic air-flow estimated for a number of grid-
points, whereas both Wilby et al. (1998) and Osborne et al. (1999) used
the geostrophic flow strength, flow direction and vorticity.

According to Osborne et al. (1999), the strongest control on the precip-
itation over central and eastern England was associated with the vorticity.
They found biases in the flow and vorticity indices, but they argued that the
bias in the mean GCM climate were not primarily due to the biases in the
simulated atmospheric circulation. Hellström et al. (2001) also included the
large-scale specific humidity at the 850hPa level.

3.2.1 Stationarity

Wilby (1997) studied the relationship between circulation indices and local
precipitation in the U.K., and observed that the empirical relationships be-
tween weather-pattern based on surface pressure and precipitation cannot
be assumed to be time-invariant. He also argued that air-flow indices were
preferred over discrete weather type classification as means of investigating
non-stationary relationships for precipitation over time, as the former involve
continuous variables that do not impose artificial boundaries on the data set
and do not restrict the sample sizes to the same extent.

3.2.2 The North Atlantic Oscillation (NAO)

The North Atlantic Oscillation (NAO) is important for the climate in the
Nordic countries (Benestad, 1998a, 2001a), but it is difficult to reproduce
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the exact evolution in the climate models. There may be several reasons
why the NAO is so difficult to predict, some of which may be due to a
chaotic nature, model misrepresentation associated ocean dynamics (too low
resolution), ocean-atmosphere coupling, sea-ice, and topography.

Hanssen-Bauer (1999) found that the recent climatic trends in Norway
can primarily be explained in terms of systematic changes in large-scale cir-
culation.

The recent observed winter time warming may be related to the strength-
ening of the winter time NAO, as the correlation between the NAOI and
south Norwegian temperatures is strong. The fact that the empirical SLP
and 500hPa models, which primarily describe the relationship between the
large-scale circulation and the local temperatures, did not indicate much
warming, suggests that the model did not describe a warming due to sys-
tematic shifts in the large-scale circulation. Benestad (2001a) argued that
little of the warming since 1860 over Norway could be explained in terms of
systematic changes to the NAO, despite the preceeding strengthening of the
NAO.

3.2.3 Autocorrelation & Degrees of Freedom

When multi-variate variables, such as fields with smooth variations in space,
are used as predictors, there are two important aspects to consider. For
one, a smooth fields contain redundant information. Second, the predictor
describing smooth fields consists of co-linear time series. The former property
allows us to reduce the data size and still retain the information, while the
latter limits the choice of numerical techniques that can be employed.

Spatial coherence

If there is spatial coherence in a field, i.e. that different measurements xr(t)
are correlated over locations r at times t, (spatial autocorrelation), then
the actual number of independent spatial observations is smaller than the
number of observers. The data can then be represented by matrix X with
nr simultaneous observations at different sites (grid points on a mesh), each
made nt times.

Spatial correlation relates to how smooth the field varies spatially, and
it was stated earlier that spatially smooth fields are a requisite for ESD.
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Thus, by measuring x at r1 we can get an idea of what the value is at
the nearby location r2. Thus the actual degrees of freedom for each time
is less than nr (for gridded data nr = nx × ny). This spatial smoothness
also is utilised by Empirical Orthogonal Functions (EOFs), which extracts
the essential information from the data matrices, since non-zero correlation
implies a degree of redundancy.

However, we often assume that the data are uncorrelated in time in our
analysis, i.e. X consists of independent temporal realisations. Hence, the
PCA may represent the data in terms of a small number of EOFs describing
the coherent spatial structures with similar “behaviour”.

3.2.4 Empirical Orthogonal functions (EOFs)

~x = ~e1+ ~e2+ ~e3
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Figure 3.3: Example showing how one map (~x on the left) can be expressed as a
superposition of other maps/structures (~e1 + ~e2 + ~e3).

In geo-sciences, gridded data fields can be thought of as a series (or stack)
of maps, one for each time of observation, and often, one particular feature is
prominent in several of these maps. If this feature is removed from the data
by subtraction, then we will end up with a new set of data with a different
character.

The particular feature that we removed can also be represented in the
form of a map. However, the original data can still be recovered by adding
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the feature back to the new set of maps. Thus, each map can be though of
as the result of a weighted sum of a number of set of different maps.

We call this way of splitting up one map to several others ’decomposition’,
and each map can be represented mathematically by a vector ~x:

~x = ~e1 + ~e2 + ~e3 + ... (3.1)

This concept can also be shown graphically (Figure 3.3). But why is it
interesting to decompose one map into a number of others?

It turns out that given a set of basis maps and giving each a different
weight, then it is possible to express all other maps with a much smaller set
of basis maps:

~x(t) = β1(t)~e1 + β2(t)~e2 + β3(t)~e3 + β4(t)~e4... (3.2)

Empirical Orthogonal Functions (EOFs) (Preisendorfer, 1988; North et al.,
1982; Lorenz, 1956) are convenient mathematical constructions which enable
the identification of a small set of basis maps. They are a special product of
a more general Principal Component Analysis (PCA) (Strang, 1988; Press
et al., 1989), but taylored for geophysical needs.

EOFs are associated with corresponding principal component (PC), also
referred to as ’loading vector’. Whereas the EOF represents a spatial struc-
ture (a map) and is represented by ~ei in equation 3.2, the PCs describe how
strongly these are present at the time βi(t). Some important properties of
about EOFs are:

• the EOFs are orthogonal (uncorrelated, or are perpendicular in ’data
space’)

• the principal components are orthogonal (uncorrelated)

• EOFs can be used to reduce the data size by taking advantage of re-
dundant information such as spatial correlation.

• The leading EOFs describe the most important modes; those which
represent the most variability.

The fact that the EOFs and the PC both are orthogonal means that the
set of basis maps can be reduced to a minimum number of maps necessary
to describe a given situation.
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Figure 3.4: A 2-D example of the rotation of the reference axes in data space.
The red line shows the direction along which the scatter is greatest.

.

Spatial inter-dependence implies that there is a lot of redundant informa-
tion stored in a nx × ny map, and that the information can be compressed
to just a few numbers describing the state of that field. Moreover, the most
common way to compress the data is through PCA.

By computing the EOFs and retaining a few of the first leading EOFs
(neofs ≪ nt), one can compress the size of the data from nx × ny × nt to
nx × ny × neofs + (nt + 1) × neofs with a minimal loss of information (filters
away much of the small-scale noise).

If we have a record stored as 100 time slices on a 50×30 grid and we retain
the 10 leading EOFs, then the data size can be reduced from 150,000 numbers
to just 16,010 numbers and still account for about 90% of the variance.

North et al. (1982) gives a nice discussion on the EOFs and practical
tips on how to estimate them. They also give a “rule-of-thumb” expression
(first-order corrections) for the uncertainties (shift) associated with the ith
eigenvalue estimation λi:

δλi ≈ λi

√

2/N. (3.3)
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’S-mode’

The vectors are written as ~x and matrices are denoted by using the capital letters:

X = [ ~x1, ~x2, .., ~xT ]. The vector quantities are used to represent several observations at

a given time, i.e. they can be regarded as maps. Let the number of observers mean the

number of grid points or stations where observations are made (number of observers

= R), and the number of observations be the length of the time series at each location

(number of observations = T ). We use the notation x to mean the temporal mean of x

and 〈x〉 the spatial (ensemble) mean of x. Let the matrix Xrt contain T observations

from R different locations, where X can be expressed in the form X = [ ~x1, ~x2, .., ~xT ]

and ~xt = [x1(t), x2(t), .., xR(t)]. Each column represents one set of observations, with

each element holding the data from the r different locations:

X =











.. → T

↓ .. ..

R .. ..











. (3.4)

Let anomalies in X be defined as:

X ′

rt = Xrt −
1

T
ΣT

t=1Xrt = Xrt −Xr. (3.5)

The variance-covariance matrix is defined as

Crr = X ′X ′T =











.. → R

↓ .. ..

R .. ..











. (3.6)

The S-mode Empirical Orthogonal Functions (EOFs) of Xrt are defined as:

Crr ~es = λ~es. (3.7)

Let Es = [~e1, ~e2, .., ~eR∗ ] be a matrix with the columns holding the eigenvectors (EOFs)

and R∗ be the rank of X. The original data may be expressed in terms of the orthogonal

set spanned by the EOFs:

X = Eβ. (3.8)

where β is the projection of X onto the EOF space.
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We can use singular value decomposition (SVD) to compute the EOFs. Using SVD, we

can express the matrix X ′ as:

X ′ = UΣV T . (3.9)

Note that the SVD algorithm is written in such a way that the numbers of columns must

be less than number of rows. In this example, the number of observers are assumed to

be greater than the number of observations (which often is the case for gridded climate

data). If the number of columns is greater than the number of rows, then the SVD

must be applied to the transpose of the matrix (U and V will now by swapped).

The columns of U and V are orthogonal respectively:

UTU = V TV = I. (3.10)

The matrix Σ is a diagonal matrix, with R∗ non-zero singular values and R −R∗ zero

values in descending order along the diagonal. The inverse of Σ is a diagonal matrix

with the reciprocal of the non-zero singular values along the diagonal, and where the

reciprocal of the small singular values or zeros are taken to be zero. The variance-

covariance matrix can be expressed in terms of the SVD products:

Crr = X ′X ′T = UΣV T (UΣV T )T = UΣV T (V ΣUT ) = UΣ2UT . (3.11)

A right operation of U gives:

CrrU = UΣ2. (3.12)

or

Crr~u = σ2~u. (3.13)

Hence, U = Es and σ2 = λ, and the SVD routine applied to X gives the S-mode EOFs

of X. The S-mode, described above, is usually employed when deriving spatial EOF

maps.
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Temporal coherence

If there is serial temporal correlation then the actual number of independent
observations is smaller than nt. The EOFs hence yield a smaller set of
temporal structures, or “trajectories”. Each of these trajectory is associated
with a spatial structure given by.

Spatial anomalies

We have so far only considered anomalies where the temporal mean value at each

location is subtracted from the respective time series. It is also possible to perform

EOF analysis on “spatial anomalies” where the mean observation at time t, 〈~x(t)〉, is

subtracted from all observations at this time:

X+
rt = Xrt − ΣR

r=1Xrt = Xrt − 〈Xt〉. (3.14)

Whereas the temporal (the usual definition of) anomalies captures trends in time (such

as a global warming) and oscillations, EOF analysis based on spatial anomalies will

be insensitive to the evolution of global mean values. The PCA on spatial anomalies,

on the other hand, will be sensitive to large spatial gradients, although oscillating

structures that have sufficiently small scales to produce large spatial variance will also

be captured by the spatial anomaly EOFs.
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’T-mode’

The spatial variance-covariance matrix is defined as

Ctt = X ′TX ′ =











.. → T

↓ .. ..

T .. ..











. (3.15)

The T-mode Empirical Orthogonal Functions (EOFs) of Xrt are defined as:

Ctt~et = λ~et. (3.16)

The spatial variance-covariance matrix can be expressed in therms of the SVD products:

Ctt = X ′TX ′ = (UΣV T )TUΣV T = (V ΣUT )UΣV T = V Σ2V T . (3.17)

A right operation of V gives:

CttV = V Σ2. (3.18)

Hence, V = Et and σ2 = λ, and the SVD routine applied to X also gives the T-mode

EOFs of X.

The T-mode has been employed where temporal evolution of coherent spatial structures

have been discussed. The T-mode forms the basis for both canonical correlation analysis

(CCA) and regression. Note, the SVD algorithm yields both S and T mode EOFs, where

S-mode are the usual maps and T-modes often are referred to as principal components

(PCs).

The nr number of independent realisations in X is often smaller than the
(effective) time dimension. Therefore, the estimation of the spatial variance-
covariance matrix tends to be associated with large sampling errors. In this
case, the S-mode is preferred method.

The nt number of independent realisations in T is often smaller than
the (effective) spatial dimension. Therefore, the estimation of the variance-
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covariance matrix tends to be associated with large sampling errors. In this
case, the T-mode is preferred method.

Analogies

The EOF analysis may be thought of as being analogous to data reconstruc-
tion based on Fourier transforms (FT), in the sense that both produce series
(vectors) which form an orthogonal basis. The transform f(x, t) → F (k, ω),
whereby the inverse transform for each of the wave numbers ki give sinusoidal
functions which are normal to the functions of other wave numbers.

Another way of thinking about EOFs is that of a rotation in data space
- a bit analogous to rotating an object when you look at it. The information
is there regardless from which angle you look at, but the rotation determines
which feature is most visible. We can illustrate this principle through a 2-
dimensional (2-D) data set (bi-variate data) in Figure 3.4. The conventional
axes are the horizontal and the vertical (in this case, they are orthogonal).

Since the scatter of points clearly follows a line, the two data are not
completely unrelated, but one contains some information about the other. If
we now rotate the whole constellation of points so that the line (dashed line
in Figure 3.4) on which the point lie follow the x-axis, then x will describe
most of the variance in the combined data. The vector describing the new
x-axis is then the leading EOF.

EOF analysis is similar to eigenfunction analysis in the sense of identifying
the direction in which the data exhibits the greatest scatter. Thus, the
EOFs can be regarded as a kind of eigenvectors, which are aligned so that
the leading EOFs describe the spatially coherent pattern that maximises its
variance. The EOFs are often used as basis functions (a new set of axes or
reference frame).

Geographical weighting

It is important to apply a geographical weighting factor if the data is repre-
sented on grids that cover large latitudinal ranges, as the boxes (on a regular
lon-lat grid) near the poles tend to represent a much smaller area than those
near the equator.

A common spatial weighting function is W = Wx × Wy, and should be

applied to the data prior to the PCA, where Wx = |
√

cos(πθ/360)| and
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Wy = |
√

cos(π(φ − 60)/90)|. Then the inverse weights should be applied to
the EOFs after the calculations.

Unweighted data will give too much weight to polar regions.
Similarly, for a network of unevenly distributed observers, a weighting

function must be applied in order to ensure equal contribution from each
independent observer.

Sometimes data from unwanted regions may be blanked out by setting
them to zero. One reason for not removing the unwanted remote areas all to-
gether can be the desire to retain all the spatial grid points as some algorithms
require more spatial data points than temporal data points. Furthermore, it
may be possible to get a better estimate of the covariance matrix and hence
a better estimate of the spatial patterns if these regions represent weak noise.
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3.2.5 Varieties of EOF analysis∗

Rotated EOFs∗

Sometimes, the interpretation of the EOF patterns may be difficult because the adjacent

modes are degenerate (not well-resolved in terms of their eigenvalues, e.g. as described

in equation 3.3): any combination of degenerate patterns is equally valid. Furthermore,

the order of degenerate modes are arbitrary. In order to resolve the modes, it is possible

to rotate the EOFs.

The rotation transforms the EOFs into a non-orthogonal linear basis, one common type

being the Varimax rotation (Kaiser, 1958) is one of the most commonly used type of

rotation that minimises the ’simplicity’ functional:

V∗

k =
L

∑L
i=1 E4

i,k − (
∑L

i=1 E2
i,k)2

L2

V ∗

k maximises if E~r,k are all 0 or 1. E(R) = ET−1. If two patterns are degenerate and

located in different regions, rotated EOFs should resolve them. Of course, there is a

catch: i) two waves may be degenerate; ii) if retaining too many EOFs.

But, what physical meaning do the EOFs actually have? Coherent spatial patterns with

maximum variance. Modes of energy? Just convenient mathematical abstractions? The

analysis depends on the nature of the problem.

Joliffe (2003) cautions against unjustified interpretations of rotated EOFs. He argued

that it is impossible from any purely mathematical or statistical technique to find the

modes in nature without any prior knowledge of their structure, and that rotation

towards a simpler structure is irrelevant as the simplest structure is trivial. Here the

term ’mode’ refers to the spatial structure of a natural (and persisting) oscillation.

Jolliffe argues that EOF analysis will be unsuccessful unless the modes are uncorrelated

and are related orthogonally to the variables. However, Behera et al. (2003) disagree

with Jolliffe.

3.2.6 Complex and frequency-domain EOFs∗

Complex EOFs∗

A complex EOF analysis (Brink and Muench, 1986; Kundu and Allen, 1976) can

be applied to a two-component field when we want to look for patterns which are

independent of the orientation of the axes: for instance the two wind components

X = U + iV → CXX = X∗X (here X∗ means the complex conjugate). CXX is a

Hermitian, so the eigenvalues are real whereas the EOFs are complex.

Complex EOFs give phase information between the two components (tan(Im(U)

Re(U)
) as well

as their energy. Study of propagation can be based on the application of a complex

EOF analysis to the same field but with a lag difference.
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Frequency-domain EOFs∗

Waves have coherent structures with consistent phase relationships at different lags.

Frequency-domain EOFs (Johnson and McPhaden, 1993; Wallace and Dickinson, 1972)

can be used for identifying patterns associated with certain frequencies.

Extended EOFs∗

Propagation may be studied with a technique called ’Extended EOFs’ (EEOFs). The

math is essentially the same as for ordinary EOFs, and the difference lies in the pre-

processing of the data. The EEOFs maximize the variance in a (nx ×ny)×nl window.

EEOFS involve computing the covariances at all spatial lags and out to time-lag nl −1.

We let the ~x describe the geographically distributed data at time i, denoted by the

subscript. Then X = [~x1..~xT ] → X′ = [{~x1..~xL}..{~xT−L..~xT }] = [~x′1..~x′T−L], where

~x′i = {~xi..~xi+L}.
PCs have rank nt − nl + 1.

Advantages associated with EEOFs include: i) more averaging → smoother patterns

and sometimes better S/N; ii) contain lag-relationship information that can help inter-

pretation of the patterns.

Pitfalls: The eigenvectors of the inverse covariance matrix are similar to EOFs of

common noise process. Thus the errors are: Ω−1~e = ~eλ, which can have similar

solutions to the wave equation.

Sanity check: i) compare with EEOFs applied to data filtered through a few of the

leading conventional EOFs; ii) model each PC as an AR(1) (red noise; null hypothe-

sis) process (MC-test): H0= “Data consists of mutually independent, non-oscillatory

processes”; iii) Compare power in each extended EOF/PC pair with the distribution

of power in that from the surrogates: if all are outside the null-distribution, H0 can be

rejected.
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Mixed-field and common EOFs∗

Mixed EOFs are just like ordinary EOFs or EEOFs in mathematical sense,
but differ in how the data is pre-processed and the type of data that they
represent.

Instead of merging the data with a lagged version of itself, the mixed
EOFs can be calculated by merging two different fields. Their construction
is very much like the common-EOFs, but now the grids of two different fields
are merged so that the spatial grids are affected rather than the lengths.

Mixed-EOFs describe how two different fields, such as SLP and tem-
perature, co-vary in time, and represent the same as fields-combined PCA,
’CPCA’, discussed in Bretherton et al. (1992). Thus, the mixed-EOFs tend
to emphasis on co-varying signals in different data fields, or coupled struc-
tures.

Common EOFs, which will be discussed in more detail later on in asso-
ciation with ESD, is similar to mixed-field EOFs, but now one data set is
appendend to another. The two data sets must be stored on the same grid,
and should represent the same quantity.

The different data sets in mixed-field EOFs, on the other hand, can rep-
resent different physical quantities and be stored on different grids. The
different data sets, however, should be weighted in mixed-EOF analysis, so
that one set doesn’t dominate over the other.

The common EOF method is a useful technique for extracting common
spatial climate patterns in two or more data sets. The principle of the com-
mon EOF method is that two or more data fields with data points on a
common grid are combined along the time axis (concatenated), and an EOF
analysis (Benestad, 1999d) is applied to the results.

Figure 3.5 provides a graphic representation of the common EOFs. The
common EOFs are also discussed by Barnett (1999).

3.2.7 EOF in ESD

One important aspect of the EOFs is that they satisfy the orthogonality
criteria (UT U = I), which in practice may result in different ordering of the
EOF patterns in slightly different data sets. This is especially the case when
the EOFs are degenerate or close to being degenerate.

In order to match same spatial patterns in the GCM with those found
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Observations Model results

6

-
Time dimension

t = [tobs, tmodel] = 1, ..., N

EOF
number

Figure 3.5: A schematic illustrating the common EOF method, showing just the
PCs. Here, y denotes the predictands (station observations) and x are the pre-
dictors taken from the common EOF PCs. First, the PCs corresponding to the
observations and station data are used for model calibration, then the correspond-
ing PCs from the GCM model results are used for predictions.
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in the gridded observations, and those identified as important during ESD
calibration, one can use regression to project on set of EOFs onto the other.
Other techniques, such as the common EOF approach will be discussed later.

3.3 Further reading

EOF analysis is commonly used among geophysicists, and there is a large
number of references giving further details about EOF analysis and related
mathematical considerations. Press et al. (1989) and Strang (1988) dis-
cuss the SVD algorithm in terms of numerical solutions and linear algebra
respectively. Anderson (1958) gives an account of principal component anal-
ysis from a statistical point of view on an advanced level, whereas Wilks
(1995) gives a simpler introduction to EOF analysis. Preisendorfer (1988)
is a commonly used text, giving detailed recipes on how to do the calcula-
tions, and Peixoto and Oort (1992) gives a brief overview of EOF analysis in
one appendix. Mardia et al. (1979) is a good book on general multivariate
methods.

Huth and Kyselý (2000) used (Varimax) rotated EOFs for downscaling
monthly mean temperature and precipitation totals in the Czech republic.
In order to ensure consistency between the EOFs from the observations and
simulated results, they projected the observed EOFs onto the GCM results.

Huth (2004) compared results of ESD based on a various choices. He
compared results based on using the field directly as predictor and a number
of analyses which used different numbers of EOFs/PCs and different linear
methods (CCA, regression). The conclusion of his study was that temper-
ature changes estimated though ESD depended on the number of PCs used
to represent the predictors, and that the larger number of PCs, the greater
the warming. The temperature change estimates varied widely among the
methods as well as among the predictors.

Whereas a pointwise regression may select grid points that maximise the
explained variance of the predictand, the PCs are designed to maximise the
predictor variance, and necessarily contain some information irrelevant to the
variability of the predictand (Huth, 2002).

Benestad et al. (2002) used mixed-EOFs in the downscaling of the tem-
perature on Svalbard. The argument for using mixed-EOFs was that these
may capture coupled modes, and hence be more ’physical’ than just ordinary
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EOFs.
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3.4 Examples

3.4.1 Basic EOF analysis
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Figure 3.6: Example of EOF results derived using the R-commands below.

In clim.pact there is a function for applying EOF to a data field:

> library(clim.pact)
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> data(DNMI.slp)

> eof.1 <- EOF(DNMI.slp,mon=1)

> class(eof.1)

> summary(eof.1)

> plotEOF(eof.1)

< ? EOF

The function has a number of arguments to set a number of conditions
which determine how the EOF is carried out. The algorithm uses the SVD
method (Press et al., 1989; Strang, 1988) rather than calculating the eigen-
vectors for a co-variance matrix. By default, the function only returns the
first 20 EOFs, and neglects the remaining information which in general is
just noise anyway.

> library(clim.pact)

> data(DNMI.slp)

> eof.1 <- EOF(DNMI.t2m,mon=1)

> DNMI.slp.2 <- EOF2field(eof.1)

The original data can in principle be recovered completely from the EOFs,
and there is a function in the clim.pact-package called EOF2field() which
does exactly that. This technique can also be employed if one wants to filter
out small-scale noise from the data. This filtering is simply done by applying
EOF() to the data keeping only a few leading modes, and then do the inverse
calculation by invoking EOF2field().

3.4.2 mixed-field EOFs

> data(DNMI.sst)

> data(DNMI.slp)

> sstslp <- mixFields(DNMI.sst,DNMI.slp)

> eof.mix <- EOF(sstslp,mon=1)

> plotEOF(eof.mix)

The example in the lines above shows how easily mixed-EOFs can be
constructed within the clim.pact framework.
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Figure 3.7: Example of mixed-EOF output produced by the example below. The
mixed-EOF describes the coupled SST-SLP January variability, exhibiting a tri-
pole SST pattern associated with an NAO-type circulation structure.

3.4.3 Extended EOFs

> data(DNMI.sst)

> eeof <- ExtEOF(DNMI.sst,mon=6)

> plotEOF(eeof)
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Figure 3.8: Example of Extended EOF output produced by the example below.

The example in the lines above shows how easily extended EOFs can be
constructed within the clim.pact framework.
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3.5 Exercises

1. Describe EOFs.

2. Estimate the EOFs of the SLP for a) January and b) July SLP using
the period 1879-1948 from the data set DNMI.slp. Do the same for
the 1949-1998 period. Compare the eigenvalues. Are they similar?
Compare the spatial patterns: are they similar?

3. Compute a set of 2-component PCA for the July temperatures in
Bergen and Oslo. Make a) a scatter plot of the original data and b) of
the PCs. Compare the two plots: can you see that the PCA products
give a “rotated” version of the original data?

4. Why is it useful to use EOFs and PCs in ESD rather than the fields
themselves? (what useful properties do EOFs have?)

5. Use the command mixFields and EOF to compute mixed field EOFs.

6. The command catFields is a versatile function and can be used to
re-grid or extract parts of a field. Use catFields with only one input
to split DNMI SLP into two equal parts. Then compute the EOFs for
each time period. Then use catFields with both the parts as inputs
to combine the data, and use EOF to compute common EOFs. How
does the ’common EOF’ compare to the EOF from the original field or
the two parts?
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Chapter 4

Linear techniques

Figure 4.1: Linear techniques offer the most transparency in terms of understand-
ing the connections, and they have one big advantage in being transparent.

4.1 Introduction

In many circumstances, climate studies involve more than just two time
series. Sometimes, spatial maps of a parameter, such as the SLP, are used

87
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instead of just one station value. The geographically distributed climate
quantities are often stored in gridded data files, consisting of nx × ny grid
boxes (or points), each which represent the mean value for that particular
grid box area.
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Figure 4.2: A linear multiple regression against the January precipitation in Thor-
shavn and the PCs derived from the EOF analysis of the January DNMI.slp yields
a multivariate analysis which return a time series predicted from the SLP data (red
curve in left hand panel) and maps of regression weight (right).

An example of multivariate analysis is the map of regression weight (also
referred to as the ’predictor pattern’) between the SLP and January precip-
itation in Thorshavn (Figure 4.2). Such maps can also be used to identify
teleconnections, and lagged-correlation maps can be used in the study of
propagating signals.

It is easy to see how linear techniques can be justified if the they are
viewed as a means to provide an approximate description of a response to
a small perturbation (Figure 4.3). We can divide the problem of modelling
into two different classes: (a) non-linear response to small perturbations
(using the tangent of the curve) and (b) response that has a strong stochastic
character. Both uses are common in disciplines such as physics and natural
sciences.

We begin with a discussion of technical details concerning the construc-
tion of the statistical models. The first section defines linear algebra nota-
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Figure 4.3: Linear methods can often be used to provide a reasonable approxima-
tion, even to a non-linear response as long as the perturbation is small and the
response is smooth (left). Also when the response is not entirely determined by the
predictors, a linear approximation may be used to provide a crude and approximate
description of the response (right). The linear prediction is shown as red-dashed
lines.

tions employed here and is followed by sections where the equations used in
Canonical Correlation Analysis (CCA) are derived. These sections are not
essential for the understanding of the final results and may be skipped by
those who are not interested in the model details.

The section on cross-validation discusses the model results, i.e. the re-
lationship between the predictor fields and the predictands. In this section,
the model skill is evaluated. Where possible, a physical explanation is given
as to how the predictors may influence the predictands.

The section on model stationarity describes studies where the models have
been constructed using the half of the data which approximately corresponds
to the periods with lowest temperatures in the northern hemisphere, and
subsequently used for prediction of the second half which is associated with
warmer temperatures. This analysis is a crude test to investigate if the
assumption of constant relationship between predictors and predictands holds
for a warming scenario.

If the statistical downscaling models are to be used in the study of future
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climate change, it is important that the statistical relationship found for the
training period also holds for the prediction period. The main findings are
summarised in the last section.

4.2 Linear Multivariate methods

In the category linear multivariate methods, we have three main types: Mul-
tivariate regression (MVR), Canonical Correlation analysis (CCA), and Sin-
gular Vector Decomposition (SVD).

Here ’SVD’ used to find coupled patterns should not be confused with
the numerical algorithm used in PCA (Strang, 1988; Press et al., 1989);
the two different concepts bear the same name and abbreviations, but have
different meanings. However, they are not entirely unrelated, as the SVD
used in coupled mode analysis applies the SVD in PCA on a co-variance
matrix based on two fields rather just one field. We will not dwell on the
SVD algorithm used to compute PCA here, and when we discuss ’SVD’ from
now on, we will refer to the method for analysing coupled patterns in two
different fields.

While the CCA and SVD models were based on maximizing correlations
and covariance, the regression models aim to minimize the root mean square
error (RMSE). The regression models are based on the least squares solutions
to an inconsistent set of equations.

Many of the multivariate methods employ a preparing step (pre-processing)
which makes the analysis easier and by making a new set of series with the
same information as the original data, but which are now mutually uncor-
related and utilises redundant information in such a way that the number
of series can be reduced. This step involves EOFs discussed in the previous
section.

One important part of the statistical models is that they are based on his-
torical (empirical) data, and it is therefore crucial that the data sets on which
these models are based are free from serious errors. A thorough evaluation
of several predictor and predictand data sets is recommended.

The leading spatial weighting pattern (e.g. regression weights, leading
spatial CCA or SVD pattern) will hereafter also be referred to simply as
“the predictor pattern”.
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4.3 Regression

Multivariate regression (MVR) models bear many similarities to the Canon-
ical Correlation Analysis (CCA) and Singular Vector Decomposition (SVD)
techniques. SVD is discussed in more detail in Strang (1988) and Press et al.
(1989), and is beyond the scope of this text. MVR differs to CCA by how
the model tries to optimize the fit. Whereas CCA finds pattern couples with
the highest correlation, MVR tries to minimize the root-mean-square-error.

The results from the MVR predictions are represented slightly differently
here compared to the the CCA and SVD models, due to the different math-
ematical formulation of the models.

Here, each predictand time series (station) is associated with different
predictor patterns, each representing the regression coefficients between the
predictor fields (e.g. 20 leading EOFs) and the respective temperature record
for the particular station.

For the CCA and SVD methods, on the other hand, each predictand
series may be associated with a combination of several predictor patterns.
Furthermore, the predictand weights (regression coefficients of X = Ŷ Ψ−1)
for the MVR results indicate the contribution of each EOF to the predictor
pattern, whereas for CCA and SVD, the predictand weights indicate the
contribution of each CCA or SVD pattern.

4.3.1 Multivariate Regression models

Y T = XT Ψ − ζ, (4.1)

of n equations with q unknowns, and where ζ represents a noise term. Y and X have

the same number of temporal samples t, but may have different spatial representa-

tion (different grid or number of locations). Here we use the convention with spatial

dimensions along the columns and temporal conventions along the rows:

X =











.. → t

↓ .. ..

r .. ..











. (4.2)
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Strang (1988) uses a different convention (’Ax = b’ where ’A’ corresponds to XT here,

’x’ to ψ, and ’b’ to Y T ), but the equations are in essence identical. If the noise term is

insignificant then the linear expression is satisfied by the normal equations:

XXT Ψ = XY T , (4.3)

The matrix product XXT is invertible if the rows of X are independent, and we can

express Ψ in terms of X and Y only (Strang, 1988, pp.156):

Ψ = (XXT )−1XY T . (4.4)

Equation 4.1 may, however, involve significant noise levels and a “true” estimate of Ψ

is then:

Ψ = (XΩ−1XT )−1XΩ−1Y T , (4.5)

where Ω = E(ζζT ) is the error-covariance matrix. One problem is that we only have

an estimate of Ω if ζ is known (Ω̂ = ζζT ). Ω may also be non-invertible. We can get

around these problems by excluding the noise term from the analysis, and only attempt

to predict the signal in Y that is related to X, which we refer to as Ŷ .

Ŷ T = XT Ψ. (4.6)

By applying PCA to the data and truncating to the kth leading EOF, we also remove

noise in X and ensure that (XTX)−1 is invertible by writing the matrix in terms of its

PCA products (X = EΣV T ),

[XXT ]−1 = [(E(k)Σ(k)V
T
(k))(E(k)Σ(k)V

T
(k))

T ]−1 = [E(k)Σ
2
(k)E

T
(k)]

−1.

Hence equation 4.5 can be expressed as:

Ψ = (E(k)Σ
2
(k)E

T
(k))

−1XY T , (4.7)
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In many cases, co-linearity may be a problem for regression. Some pack-
ages, such as R, offer methods which are robust to co-linearity (it’s easy to
test this by constructing the following example). By ’co-linear’ we mean that
the inputs are not independent, but several contain the same information (are
correlated).

One solution to co-linearity is to pre-process the data by PCA or EOF
analysis and use the principal components as inputs. The regression coeffi-
cients are not changed by swapping the orders of the inputs:

> t <- seq(0,20*pi,length=1000)

> n <- rnorm(1000)

> y <- sin(t)

> x1 <- 0.4*y + 0.01*n # (1/0.4= 2.5)

> x2 <- 0.3*y + 0.02*rnorm(1000) # (1/0.3= 3.3)

> lm(y ~ x1 + x2)

Call:

lm(formula = y ~ x1 + x2)

Coefficients:

(Intercept) x1 x2

0.0002824 2.1528601 0.4600223

> lm(y ~ x2 + x1)

Call:

lm(formula = y ~ x2 + x1)

Coefficients:

(Intercept) x2 x1

0.0002824 0.4600223 2.1528601

4.4 Canonical Correlation Analysis

CCA is a statistical method for finding spatially coherent patterns in different
data fields that have the largest possible temporal correlation (Wilks, 1995;
Preisendorfer, 1988).
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Canonical Correlation Analysis, or CCA, is one brand of linear multivari-
ate methods, which can be employed to downscale one field given another.
Thus, in this case, the predictand is no longer uni-variate, but a map of grid-
ded data, mathematically can be denoted as ~y → Y . Thus, in the following,
Y is our predictand and is a matrix.

There are various ways to carry out CCA. Here we will discuss two types:
the ’classical CCA’ and ’Barnett-Preisendofrer CCA’. Both types aim to
produce maps of spatial structure which have the maximum correlation.

The climate data can be thought of as a linear superposition of spatially
coherent patterns at any time, and the time evolution of each pattern is
described by an index (the extension coefficients) that determine how much
each pattern contributes to the climatic state. The CCA yields two sets of
weights that give the combinations of the corresponding sets of patterns with
the maximum temporal correlation.

In CCA, we want to find the spatial patterns that give the maximum
temporal cross-correlation between Y and X.

4.4.1 Classical CCA

We want to express two data fields as

Y = GUT ,

X = HVT , (4.8)

where U and V are known as the Canonical variates, and describe the time evolution

that have the greatest possible correlationsa, and G and H are the spatial patterns

associated with these.

aThe leading column of each Canonical variate holds the time series which have
the highest possible correlation, and the subsequent columns must be orthogonal to
the respective leading column (Bretherton et al., 1992). The second Canonical variate
would represent the highest possible correlation of the data if the first Canonical variates
and corresponding patterns were excluded from the data. The third column gives the
highest correlation if the first 2 leading Canonical variates were removed before analysis,
and so on.
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One important property of the canonical variates, U and V, is that each canonical

variate is uncorrelated with all the canonical variates in the opposite set with the

exception of the corresponding canonical variate (Wilks, 1995, p.400).

The rotation matrices L and R, also referred to as the canonical correlation weights or

canonical correlation vectors, satisfy the following properties: LTL = I and RTR =

I (Preisendorfer, 1988, p.299).

Mathematically, the analysis can be posed as a maximization problem, which can be

expressed in the form of an eigenvalue equation. The temporal correlations are given

as:

UTV = LMRT = C. (4.9)

The correlation matrixM contains the correlation coefficients on its diagonal and all off-

diagonal elements are zero when the columns in U and V are optimally correlated. By

using the fact that the transpose of the rotation matrices equals their inverse (Strang,

1988; Press et al., 1989), equation 4.23 can written as:

CR = LM,

CTL = RMT . (4.10)

By operating C on the the last of the equations 4.10, we get CCTL = CRMT =

LMRTRMT = LMMT , and we can now re-write the equations in the form of

eigenequations where rotation vectors in the columns of L and R are the eigenvec-

tors (Preisendorfer, 1988, p.302):

(

CTC
)

L = L(MMT ),

(

CCT
)

R = R(MTM). (4.11)

In order to solve the eigenvalue equation, the normalised covariance matrices, which

are subject to the maximization, must be estimated:
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CY Y = Y Y T ,

CXX = XXT ,

CY X = Y XT . (4.12)

The matrix product, C (a nr × nr matrix) is a normalised covariance matrix:

C = C−0.5
Y Y CY XC

−0.5
XX , (4.13)

and can be diagonalised using the SVD algorithm (Press et al., 1989; Strang, 1988):

C = LMRT . (4.14)

In equation 4.14 L and R are left and right rotation matrices respectively which yield

an optimal weighted combinations of the original time series. M is a diagonal matrix

with the canonical correlation values in descending order on its diagonal. The CCA

maps, H and G, can be calculated from the covariance and the rotation matrices:

H = CY Y C
−0.5
Y Y L, (4.15)

G = CXXC
−0.5
XX R. (4.16)

CCA extension coefficients (describing time evolution) can be calculated from the ro-

tation matrices and the original data:

U = C−0.5
Y Y LY, (4.17)

V = C−0.5
XX RX. (4.18)
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Linear relationships from model based on CCA

The statistical models described here are based on linear relationships between the

predictors and predictands and can be expressed as (Heyen et al., 1996):

Ŷ = GMVT ,

X̂ = HMUT . (4.19)

The first of equations 4.19 can be written as

Ŷ = ΨX, (4.20)

where the matrix Ψ is the statistical model that can be used for prediction. The canon-

ical variates, U and V, the canonical correlation maps, G and H, and the correlation

matrix, M , form the basis for the statistical model.

The two data fields Y and X are related to these CCA products according to equation

4.8, and the canonical variate V can estimated as VT = (HTH)−1HTX. Y can therefore

be predicted from X according to:

Ŷ = GM(HTH)−1HTX (4.21)

The projection of X onto Y gives the predicted values of Y , and is denoted as Ŷ . The

CCA model is the matrix Ψ = (GM(HTH)−1HT ), where G and H are the canonical

patterns andM is the diagonal matrix with the canonical correlations along its diagonal.

In clim.pact there is a function for applying CCA to two data fields.
We will use the term ’classical CCA’ in the meaning of CCA applied directly
onto the fields themselves, whereas the ’Barnett-Preisendorfer CCA’ method
refers to CCA applied to EOF results.

In clim.pact, the CCA analysis can be be applied to both EOFs and
field, and if the argument “SVD=TRUE” (default) is used, then the CCA is
computed using SVD according to Bretherton et al. (1992) rather than the
co-variance matrix method (Wilks, 1995; Heyen et al., 1996) reproduced in
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the box above.
In some cases the matrices are computationally singular, inhibiting the

calculations. In these cases, it is useful to apply a different algorithm by-
passing the problems. Care should be taken, as it is not guaranteed that the
different approaches yield the same results.

4.5 Singular Vectors

The singular vector decomposition (SVD) analysis is a method for finding
coupled spatial patterns which have maximum temporal covariance, and em-
ploys a numerical algorithm which calculates left and right eigenvectors (Press
et al., 1989; Strang, 1988). It is important to stress that this numerical al-
gorithm and the coupled pattern analysis described here are two different
concepts although both are referred to as SVD.

The coupled pattern analysis SVD method (hereafter, referred to as just
SVD) is similar to the CCA (Benestad, 1998a; Wilks, 1995; Bretherton et al.,
1992; Preisendorfer, 1988), but differs from CCA by the fact that the SVD
finds spatial patterns with the maximum covariance whereas CCA finds pat-
terns with maximum correlation. In other words, the SVD models are less
sensitive to weak signals with high correlation than the CCA models.
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The notations employed here are the same as in Benestad (1998a), and the predictor

and predictand data can be written as following:

Y = GU
T ,

X = HV
T , (4.22)

where U and V are referred to as extension coefficients and describe the temporal

evolution of the spatial patterns described by G and H. The SVD time series, U and

V, have similar variance as Y and X respectively, and the singular vectors (spatial

patterns) satisfy GT G = HT H = I.

The matrices U and V contain the time series of the SVD patterns along their columns

so that the leading columns of the two matrices have the greatest possible covariance.

We will henceforth drop the subscripts, as all the matrices discussed here are SVD

products.

Mathematically, the SVD analysis can be posed as a maximization problem, which can

be expressed in the form of an eigenvalue equation in a similar fashion as for CCA. The

covariance matrix is calculated according to:

XY T = CXY . (4.23)

The mathematical solution to the maximisation problem is similar to that of CCA, but

with C replaced by CXY :

CXY = LMRT . (4.24)

The rotation matrices, L and R, represent the actual spatial patterns that have maxi-

mum covariance. The expansion coefficients are given by the matrix products (Brether-

ton et al., 1992):

U = LY,

V = RX. (4.25)

The linear relationship between the predictors and predictands employing SVD analysis

products is given in equation 4.25:
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Ŷ = GCY V C
−1
V V V

T ,

X̂ = HCXUC
−1
UUU

T , (4.26)

In equation 4.26 we have included the scaling factors C−1
V V and C−1

UU so that Ŷ accounts

for as much variance as Y . If X = Y , then G ≡ H, V ≡ U and X = HCXUC
−1
UUUT =

HUT , which impliesa that CXU = CUU = CXX .

The singular value decomposition extension coefficients can be expressed in terms of

the spatial SVD patterns and the original data, VT = H−1X, and the first equations in

4.26 can therefore be expressed as:

Ŷ = GMC−1
XXV

T ,

Ŷ = GMC−1
XXH

TX = ΨX, (4.27)

where M = CXY . The expression for Ψ can be obtained from equation 4.27, where Ψ =

GMC−1
XXHT . The optimal predictor combination was found, as in Benestad (1998a), by

a screening method where only the EOFs that increased the cross-validation correlation

scores were included in the optimal models.

aXT U = UT U → X = U → XTX = UT U.

4.6 Further reading

Bergant and Kajfež-Bogataj (2005) proposed using a more advanced regres-
sion method for ESD, the so-called multi-way partial least squares regression
or the ’N-PLS’ regression scheme. By using N-PLS regression, they reported
slight but general improvement over ordinary regression-based ESD.

Abaurrea and Aśın (2005) used logistic regression to model the daily
rainfall as the occurrence model and generalised linear model (GLM) with
Gamma error distribution as the quantity model. GLMs will be discussed
further in chapter 9.5.1.
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Heyen et al. (1996) was one of the pioneers in using CCA for downscaling,
and the same approach was used by Busuoic et al. (1999), Busuoic et al.
(1999), and Benestad (1999a) for ESD-analysis, and more recently followed
up by Bubuioc et al. (2006). Busuioc et al. (2001) used CCA to downscale
precipitation for Sweden, but they found that the GCM (HadCM2) was not
able to reproduce the complexity of all circulation mechanisms controlling
the regional precipitation variability. However, the most important ones for
winter and autumn were identified in the first CCA pair, and were neverthe-
less well reproduced by the GCM.

One example of ESD based on the SVD method is Oshima et al. (2002),
who used it to downscale monthly mean temperature in Japan. Benestad
(1998b) also applied the SVD method to downscale monthly temperature in
Norway, but found that the skill of this exercise was comparable to that of
CCA and MVR.
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4.7 Examples

Simple ESD

library(clim.pact)

narp<-getnarp(ele=601)

print(narp$name)

th <- getnarp("Torshavn",ele=601)

data(DNMI.slp)

eof <- EOF(DNMI.slp,mon=1)

ds<-DS(th,eof)

The lines above were used to produce Figure 4.2.
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Figure 4.4: Example of MVR results derived using the R-commands below.

In the example below, a multivariate regression is applied to two fields X
(DNMI.t2m) and Y (DNMI.slp) according to Ŷ = ΨX. The results (mvr) is a
new SLP field predicted from the gridded 2-meter temperature (Figure 4.4).

> library(clim.pact)
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> data(DNMI.t2m)

> data(DNMI.slp)

> eof.1 <- EOF(DNMI.t2m,mon=1)

> eof.2 <- EOF(DNMI.slp,mon=1)

> mvr <- MVR(eof.1,eof.2) # faster and more accurate than

# using fields as input

> mvr <- EOF2field(mvr) # invert EOFs into original field

> mapfield(mvr) # Plot a map (left)

> DNMI.jan <- catFields(DNMI.slp,mon=1) # Extract January months

> plotField(DNMI.jan,lon=10,lat=60) # Plot the time series (right)

> plotField(mvr,lon=10,lat=60,add=TRUE,col="red",lty=2)



V
er
si
o
n
0
-9

104 CHAPTER 4. LINEAR TECHNIQUES

4.7.1 CCA

Example 1: simple CCA

CCA can easily be implemented in clim.pact

CCA

r= 0.91  (BP CCA − after Bretherton et al. (1992))
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Figure 4.5: Example of CCA results derived using the R-commands below.

> library(clim.pact)
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Figure 4.6: Example of CCA test results.

> data(DNMI.t2m)

> data(DNMI.slp)

> eof.1 <- EOF(DNMI.t2m,mon=1)

> eof.2 <- EOF(DNMI.slp,mon=1)

> cca <- CCA(eof.1,eof.2)

> summary(cca)
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Example 2: simple CCA-based predictions
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Figure 4.7: Example of CCA results derived using the R-commands below.

> library(clim.pact)

> data(DNMI.t2m)

> data(DNMI.slp)

> eof.1 <- EOF(DNMI.t2m,mon=1)

> eof.2 <- EOF(DNMI.slp,mon=1)
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> cca <- CCA(eof.1,eof.2)

> summary(cca)

> psi <-Psi(cca)

> ds.t2m <- predictCCA(psi,eof.2)

> DS.t2m <- EOF2field(ds.t2m)

> T2m <- EOF2field(eof.1)

> t2m.grd <- grd.box.ts(T2m,lon=10,lat=60)

> t2m.cca <- grd.box.ts(DS.t2m,lon=10,lat=60)

> plotStation(t2m.grd,mon=1,what="t",type="b",pch=21,lty=2,

col="grey",trend=FALSE,std=FALSE)

> plotStation(t2m.cca,what="t",type="b",pch=21,lty=2,col="red",

add=TRUE,trend=FALSE,std=FALSE)

> dev.copy2eps(file="cca-demo1.eps")

Example 3: CCA-based predictions with station data
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Figure 4.8: Example of CCA results derived in a form of ESD using the R-
commands below and taking station data as predictands.

> library(clim.pact)

> t2m <- stations2field()

> data(DNMI.slp)
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> eof.1 <- EOF(t2m,mon=1)

> eof.2 <- EOF(DNMI.slp,mon=1)

> cca <- CCA(eof.1,eof.2)

> summary(cca)

> psi <-Psi(cca)

> ds.t2m <- predictCCA(Psi,eof.2)

> plotEOF(ds.t2m)

> DS.t2m <- EOF2field(ds.t2m)

> hopen.obs <- getnarp("Hopen")

> hopen.grd <- grd.box.ts(t2m,lon=hopen.obs$lon,lat=hopen.obs$lat)

> hopen.cca <- grd.box.ts(DS.t2m,lon=hopen.obs$lon,lat=hopen.obs$lat)

> plotStation(hopen.obs,what="t",type="b",pch=19,lty=1,trend=FALSE,

std=FALSE)

> plotStation(hopen.grd,what="t",type="b",pch=21,lty=2,col="grey",

add=TRUE,trend=FALSE,std=FALSE)

> plotStation(hopen.cca,what="t",type="b",pch=21,lty=2,col="red",

add=TRUE,trend=FALSE,std=FALSE)
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4.8 Exercises

1. Discuss the possibility for using linear methods in cases where the re-
sponse is non-linear but small.

2. Explain which criteria MVR, CCA, and SVD optimise the fit (what do
they try to maximise or minimise?).

3. What is the advantage of applying the linear techniques to EOF prod-
ucts rather than the fields themselves

4. The command for the inner-product (matrix product) is ’%*%’. The
transpose of matrix X is’t(X)’. Write a script which performs a matrix
multiplication XT Y by taking ’Y <- eof.1$PC’ and ’X <- eof.2$PC’
from the example above. What do you get if you try to compute XT X
(use the rounding function ’round(..,4)’.

5. Use getnarp and DNMI.sst and carry out simple ESD-analysis (using
DS) for different sites. Comment on your findings.
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Chapter 5

Non-linear techniques

Figure 5.1: Clouds represent one of the most commonly observed phenomenon
that results from non-linear processes.

5.1 Introduction

What is meant by ’non-linear techniques’? Usually the term refers to the
character of the response to changes in the influencing factors, and the math-
ematical nature of the function describing this response. A linear response

111
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is one which the response is the same for an equal change in the forcing fac-
tors, regardless of their initial value. A non-linear response is one where a
similar change in the influences may cause different response, depending on
the initial state.

The temperature of water may be regarded as a non-linear function of
the heat supplied. For instance, it takes one calorie (about 4.184 Joules)
of energy to heat 1 gram of water 1◦C as long as the temperature is below
boiling point. At the boiling point (100◦C at the normal sea level pressure),
the temperature doesn’t respond as before, as the extra energy is now used
for the evaporation (or so-called ’phase transition’).

5.2 The Analog model

What is an ’analog model’? The analog model basically consists of picking
the date in the past when the situation most closely resembled the day for
which the prediction is made. To re-iterate, the method basically consists
of re-sampling past data according to which coincide with the large-scale
circulation regime that corresponds most closely with a given state of the
atmosphere (Wilks, 1995, p. 198). In essence, the analog model is a search
in a historical archive describing all weather/climate events (predictors) in
the past together with the local measurements of the quantity of interest
(predictand).

The question then is: how to determine which of the past events are the
most similar to the one in question? One way to do this is to employ a so-
called phase-space (Gleick, 1987), which in essence is a coordinate system in 2
or more dimensions. Figure 5.2 shows a 2-dimensional phase space for a case
where any hypothetical large-scale state (we can refer to these as ’events’)
can be described entirely by two numbers, or two predictors.

Each event is shown as a symbol plotted in the coordinate system. The
past event most similar a predicted event is the one which is closest in the
phase space. We let D be the smallest distance between the predicted event
and the historical events (shown as arrows in Figure 5.2).
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Figure 5.2: Illustration of how the analog model works. In this example, the
large-scale state can be described with two indices (variables). The black symbols
represent events recorded in the past (’historical events’) whereas the red symbols
represent predicted events.

5.2.1 Caveats

One concern regarding the analog approach is that it is incapable of predict-
ing new records - magnitudes outside the range of the historical batch - since
the predicted values are taken from archives of past observations. It is likely
that extreme events may become more frequent in the future (Huntingford
et al., 2003; Horton et al., 2001; Palmer and Räisänen, 2002; Frich et al.,
2002; IPCC, 2002; Skaugen et al., 2002a; DeGaetano and Allen, 2002; Prud-
homme and Reed, 1999) and there is a non-zero probability of seeing new
record-high values (Benestad, 2004d, 2003d).

The daily precipitation is not be Gaussian, and the linear models are
therefore not able to yield unbiased predictions of response to variations
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Figure 5.3: The ’book keeping’ associated with the analog model. The bar plot
shows the smallest distance for each of the red symbols in Figure 5.2, and the
number underneath keeps track of which black symbol (day) was the closest.

in the large-scale circulation. However, a least-squares approach may still
from a pure mathematical point of view provide a solution for the regression
coefficients that yields the lowest root-mean-squared-error, provided the co-
efficients are smooth functions with respect to the sums of the series (Press
et al., 1989, p. 555).

Linear models often involve a standard linear stepwise multiple regression
(R function ’lm’) whereas the analog model consists of a simple search for
the nearest point in the principal components (PC) phase space. A linear
model can be applied first to identify which PCs are relevant, and then only
the PCs retained in the stepwise search are used to define the PC phase
space in which the analog search is performed. This also ensures that both
linear and analog approaches use exactly the same predictors if they are to
be compared.
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If the analog model is to be used for studying extreme events for a future
climate, it is necessary to modify the models so that they can extrapolate
values outside the sample of observed magnitudes. Thus, the tails of the
distributions present a problem if linear models suggests a more dramatic
increase in the frequency of extreme warm temperatures than do the analog
and combined methods (Imbert and Benestad, 2005).

Another shortcoming associated with analog models is that they do not
ensure a consistency in the order of consecutive days if weather regimes are
not well-defined, however, this may to some degree depend on the evolution in
the PC phase space and clustering of past states as defined by the predictors.

In some cases a combined approach, where the mean trend is derived
seperately through linear methods and then superimposed on the analog re-
sults, yields distribution shifts towards higher values than a purely analog
model, and hence is capable of making extrapolations, i.e. producing values
outside the range of values in the calibration sample. Although this solution
can in theory predict changes in extreme values as a result of a trend, it
cannot account for changes in extremes due to an altered variability in e.g.
the large-scale circulation patterns. Moreover, a study by Katz and Brown
(1992) has suggested that the frequency of climatic extremes depends more
strongly on changes in the variability rather than changes in the mean cli-
matic state, and the results from Imbert and Benestad (2005) suggest that a
linear model projects an increase in the frequency of very warm temperatures
that is disproportional to the changes in the mean value. Hence, the addition
of a mean trend to the analog method results may not suffice for studies of
future extreme values.

A different solution to improving the downscaling with analog models has
been suggested by Hanssen-Bauer (private communications) who proposed
to include warmer seasons in the calibration of the model. For instance,
the present analog model for the winter season could extend the search for
nearest point in PC phase space representing the winter months to also in-
clude spring, summer, and autumn months to account for a warmer future
climate. The limitation of this approach is, of course, that this approach
would not be applicable for models for the summer season. This approach
will be evaluated in future studies.

The analog model appears to be more appropriate for daily rainfall than
for downscaling of temperature. Imbert (2003) analysed the variance pre-
dicted for the daily precipitation with linear regression and an analog model,
and found that while the linear method underestimated the variance, the
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analog model could describe ∼100% of the variance.
Imbert and Benestad (2005) looked at the sensitivity of the predictions

to different choices of the analog model design. One question is whether the
various component should be weighted by the eigenvalue when searching for
analogs in the data-space defined by the principal components from the EOF
analysis. The result of the test suggested that the use of weighted principal
components improved the results. Imbert and Benestad (2005) also proposed
and adjustment scheme to improve the results, by adopting a common-EOF
approach and shifting the mean and variance of the principal components
so that the part describing the control period matches with those for the
observations. More over, the PCs ought to be scaled by the principal values
from the EOF analysis in order for the analog model to give good results.
Such a weighting puts more emphasis on meaningful (leading) EOFs and
reduces the effect of noise (high-order EOFs).

The analog model is per definition incapable of making predictions of val-
ues outside the historical sample, and thus is unable to predict new record-
breaking values (Imbert and Benestad, 2005). Even for a stationary process,
new record-breaking values are expected to occur with time, albeit at suc-
cessively longer intervals. Furthermore, it is not guaranteed that the analog
approach is able to provide a realistic description of the upper tails of the
PDFs. One can, however, apply a simple iid-test (Benestad, 2003d, 2004d)
to check whether the data is independent and identically distributed (iid).

5.3 Classification methods

Classification methods can be compared a tree, where the large branches
represent the clusters/classifications and the small twigs the individual data
(e.g. solutions or weather conditions). The illustration in Figure 5.3 provides
a natural case where the snow is clustered on some of the main branches.

Weather types involve a classification of the synoptic (weather at a spatial
scale of ∼ 1000 km) weather conditions. Traditionally, weather types have
involved the Lamb weather types (for the U.K.) or the Grosswetterlagen
(Germany), based on experience and subjective analysis.

The idea of classification methods is that one type of weather (e.g. a
’cyclonic regime’) tends to bring one type of precipitation or temperature
patterns. For western Scandinavia, a strong NAO implies more pronounced
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and persistent westerly on-shore winds that bring moist maritime air into
the interior. The mountain ranges force the air to ascend in order to pass,
causing the air to cool and release much of its moisture (orographically forced
precipitation).

With the advent of digital computers and more powerful data analysis re-
sources, more objective classification methods have made an impasse. These
range from simple analog models, cluster analysis and neural nets.

5.3.1 Cluster analysis∗

Recurrent patterns are often observed in the climate. Such phenomena are
often referred to as weather or climate regimes, and cluster analysis may
be used for identifying these. The cluster analysis categorise the data into
groups whose identities are not known in advance (eg Wilks, 1995 Wilks
(1995) p.419-428). It is common to use the PCs from an EOF analysis as
input to the cluster analysis.

Cluster analyses primarily represents an exploratory data tool, rather
than an inferential tool. Commonly used cluster analysis procedures are hi-
erarchical that build a set of groups, each of which is constructed by merging
pairs of previously defined groups, starting with two groups. A dendrogram
is a tree diagram showing the intermediate results from a cluster analysis
(Figure 5.5).

Distance measure and clustering methods may vary, but clustering bears
similarities to the analog approach. Clusters tend to consist of points in a
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Figure 5.4: Illustration of how clustering works. Scatter plot of two leading PCs
of January SLP over the North Atlantic. The data can be organised into different
classes according to their difference to the nearest cluster of points (her marked by
hand as vague red circles).

K (eg number of EOFs) dimensional space which are close to each other
compared to members of other clusters. The distance between two clusters
is:

dj,i = ||~xi − ~xj|| =

[

K
∑

k=1

(xi,k − xj,k)
2

]

.

Sometimes, the squared distance (d2
j,i) or correlation is used. There are

several methods for defining the cluster-cluster distances, such as: i) single-
linkage, ii) complete-linkage, iii) average-linkage, iv) centroid clustering, and
v) Ward’s minimum.

One central question is: how many clusters are there in the data? al-
ternatively, when to stop the search? There is no universal answer to these
questions and subjective choice must be made, for instance on summary
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Figure 5.5: Illustration of how clustering works. Left, an example from the
cluster-package available on CRAN; ’example(diana)’. Right: a dendrogram
for the two leading PCs of July T(2m) over the North Atlantic shown in Figure
5.4. The data can be organised into different classes according to different criteria
(resemblance).

statistics based on some kind of hypothesis testing or the inspection the
distances of the merged clusters.

The classification method is similar to the analog model in many respects,
but a pool of historical data is now distributed into different classes according
to the corresponding large-scale circulation pattern (Zorita and von Storch,
1997). Predictions can then be made by deciding which class a given large-
scale situation belongs to, and then choose a random observation from the
batch of data associated with this class. An analogy is to draw a number from
one of several different hats, and that the hat to choose from is determined
by the type of circulation.

5.4 Neural Nets

We will use the terms ’neural nets’ and ’neural networks’ here with the same
meaning. Sometimes the term ’artificial neural networks’ (ANN) is used,
meaning the same.

A neural network can be thought of as an algorithm which transforms
an input vector ~xi into an output vector ~xo by stepwise non-linear trans-
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Figure 5.6: One draw-back with neural nets is the lack of transparency. They are
often referred to as ’black box’ approaches.

formations. The number of steps, or levels, are often referred to a layer of
’neurons’, and the intermediate layers are also known as ’hidden layers’. The
number of layers can vary.

Neural nets and ANN can be employed in ESD group the weather types
into different classes (categories) as well as providing prediction models anal-
ogous to the linear models described in the preceding chapter. Non-linear
models offer the advantage of not being constrained to a linear relationship
between the predictand and predictor.

One disadvantage with neural nets is that they in general are complicated
and do not offer a straightforward physical interpretation (Zorita and von
Storch, 1999).

Neural nets also share a common drawback with other ’deterministic mod-
els’ in that they produce time series with less variance than in the observa-
tions and therefore tend to underestimate the frequency or intensity of heavy
rainfall and the frequency of dry days, even if the general distribution of dry
and wet periods is reasonable (Zorita and von Storch, 1997).



V
er
si
o
n
0
-9

5.5. FURTHER READING 121

5.5 Further reading

A method for ’correcting’ (adjusting) the GCMs/RCMs was proposed and
evaluated by Imbert and Benestad (2005). Then the question of how the
results differ between the linear and analog models was discussed, and a
combined-approach proposed, where the trends derived from linear models
are combined with the distributions from the analog models.

Zorita et al. (1995) proposed a ’Classification and Regression Trees
(CART) analysis’, a type of classification method. However, when Zorita
and von Storch (1999) compared the analog model with more complicated
methods with a focus on the winter rainfall over the Iberian Peninsula, and
found that the simple analog model was comparable in skill with methods
such as CCA, a classification-based weather generator, and neural network.

Timbal et al. (2003) used analog models to predict daily extreme tem-
peratures and rain occurrences. The models were able to partially reproduce
observed climatic trends and inter-annual variability. Timbal et al. (2003)
argued that the analog models is superior to direct model grid-average out-
put.

Zorita and von Storch (1997) argued that when evaluating the analog
method for a particular month, it is necessary to search the same season but
for different years and use those for making predictions.

Sumner et al. (2003) also used an analog model to predict the daily
rainfall for the Meidtteranian Spain. They used a similarity index which
utilised the Pearson product-moment correlation coefficients for the combined
925hPa and 500hPa geopotential height fields.

Goodess and Palutikof (1998) used the Lamb weather type classification-
based scheme to downscale daily rainfall in southeast Spain. Although the
Lamb weather types were originally developed for the U.K., Goodess and
Palutikof argued that the scheme also can be sucessfully transferred to other
regions.

Corte-Real et al. (1998) used a K-means clustering algorithm in conjunc-
tion with PCA in order to identify principal circulation patterns associated
with daily precipitation over Portugal.

Zorita and von Storch (1997) argue that there has only been a limited
number of neural network-based ESD studies, and that despite promising
aspects, it remains to be demonstrated that they in general provide useful
downscaling method.
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Penlap et al. (2004) used ’self-organising feature maps’ (SOFMs) to group
monthly precipitation from 33 stations in Cameroon into groups of stations
with related temporal variability (homogeneous regions), followed by CCA
to derive a statistical relationship between each of the groups and large-scale
conditions. SOFMs can be considered as a type of neural nets, but in this
case the method was used for selecting regions with similar characteristics
prior to a linear model.

Schubert (1998) conducted a downscaling study with both linear as well
as non-linear statistical models, including non-linear regression and neural
networks. However, the non-linear techniques did not improve the results
significantly, suggesting that the relationships between synoptic circulation
and local temperature, in this case over southeaster Australia, were mostly
linear.

Crane and Hewitson (1998) used neural nets in ESD of daily subgrid-
scale precipitation, and found that the downscaled precipitation increases
were considerably larger than the change in the model’s actual computed
precipitation.

In a more recent study, Hewitson and Crane (2002) used self-organising-
maps (SOMs) to identify the primary features in the synoptic scale SLP.
They used SOMs to describe the synoptic changes over time and to relate
the circulation to the local precipitation.

Schoof and Pryor (2001) also used ANNs and a cluster analysis to down-
scale daily maximum and minimum temperature as well as total precipitation
in Indiana, USA. The ESD involved rotated EOF as predictors and the down-
scaling was conducting using the PCs as input, cluster frequency in regression
models and ANNs.

Unpublished work by Ramı́rez-Beltrán, Rengifo and Gonzáles1, have at-
tempted to use neural nets to downscale atmospheric profiles based on ra-
diosonde and satellite data.

1http://www.cmg.uprm.edu/reports/nazario.pdf
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5.6 Examples

5.6.1 Analog model
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Figure 5.7: Example of the results returned by the analog model.

> library(anm)

> library(survival)

> library(clim.pact)

> data(oslo.dm)

> data(eof.dmc)

> anm.method <- "anm.weight"

> param <-"precip"

> a.lm <- DS(preds=eof.dmc,dat=oslo.dm,

> plot=FALSE,lsave=FALSE,param=param,

> ldetrnd=FALSE, rmac=FALSE)

> i.eofs <- as.numeric(substr(names(a.lm$step.wise$coefficients)[-1],2,3))

> a.djf <- DS(preds=eof.dmc,dat=oslo.dm,i.eofs=i.eofs,

> method=anm.method,swsm="none",

> predm="predictAnm",param=param,

> plot=FALSE,lsave=FALSE,ldetrnd=FALSE, rmac=FALSE)

> plotDS(a.djf)
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The example shows how the anm-package can be implemented. Here, a
linear ESD is carried out prior to the analog model, in order to identify the
EOFs likely to be important for the daily precipitation in Oslo. Then, the
EOFs not identified by the step-wise regression ans important are ’discarded’
before searching in the data-space for analogs.

5.6.2 Clustering

> library(cluster)

> library(clim.pact)

> data(DNMI.t2m)

> eof <- EOF(DNMI.t2m,mon=7)

> plot(eof$PC[,1],eof$PC[,2],pch=19,xlab="PC1",ylab="PC2",main="DNMI.t2m")

> grid()

> T2M <- data.frame(x=eof$PC[,1],y=eof$PC[,2])

> plot(diana(T2M))

The example here was used to produce Figures ?? and left panel in 5.5,
and shows how clustering can be implemented for climate data.
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5.7 Exercises

1. Describe the analog model.

2. Take DNMI.slp perform an EOF analysis for a chosen calendar month.

a Generate a vector ~x of length similar to the number of PCs, but
consisting of random numbers.

b Use ~x to weight the EOFs and plot the spatial SLP pattern cor-
responding to the weighting.

c Find the time t when the PC loadings are most similar to weights
in ~x.

d Find out what the temperature in Oslo was like for time t (use
data(oslo.t2m)).

The exercises a–d is a simple illustration of how the analog model works.

3. Repeat the example above for Bergen, using weighted and non-weighted
PCs.

4. Make a synthetic data set consisting of random data (rnorm()) and
make a data.frame object with the sub-variables ’x’ and ’y’. Apply
the clustering algorithm to these stochastic data. Discuss the results
and how they compare with your expectations (what do you expect?).
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Chapter 6

Predictions & Diagnostics

Figure 6.1: Layers in the rocks are not believed to form spontaneously, but are
results of changes in the environment. Armed with an understanding of physical
laws, data, and statistical methods, it is then possible through ’detective work’ to
make a statement about past events.

127
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6.1 Common notations and definitions

The rejection level α defines what is “sufficiently improbable”, and is cho-
sen prior to carrying out the tests. The level depends on the particular case,
although 5% is a common threshold, and 1% or 10% are also often used.

The p-value is the specific probability that the observed value of the
test statistics and all others which are at least as unfavourable will occur
according to the null distribution.

The rejection region, or the critical region, is the tail (wing) of the
PDF which are outside the confidence limits.

One-sided and two-sided tests: the choice between the two depends on
the nature of H0. A one-sided test is used when there is an a priori reason
to expect that either small or large test statistic (but not both) will violate
H0. An example is when the hypothesis is “It rains more in Bergen during
September than in Oslo”.

A two-sided test is used when very large or small values of the test
statistic is unfavourable to H0. For instance, a two-sided test is used for
H0=”The global mean temperature is influenced by the sunspots”1. The null-
hypothesis is then rejected if the test statistic p is greater than 100(1−α)/2
(unit in %) or smaller than 100(α)/2 (in %).

Parametric tests and non-parametric tests: Parametric tests make
some assumptions about the distribution of the data (usually theoretical
distribution such as the Gaussian), and include Student’s t-test and the
likelihood ratio test. Non-parametric (distribution-free) tests do not as-
sume a theoretical distribution function, and include the rank tests such as
the Wilcoxon-Mann-Whitney, re-sampling tests (bootstrap estimates), and
Monte Carlo integrations.

6.2 Predictions

The predictions are usually considered as the ’main’ results; the actual num-
ber that provides the answer to the question that we pose. Predictions are
usually derived through regression or other linear methods, but as suggested
above in the discussion of the diagnostics, they are not the sole results but
are accompanied by measures of the prediction quality.

1Correlated or anti-correlated (high negative correlation coefficient)
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The quality of the predictions depends on both how well the model de-
scribes the link between large-scales as well as the GCMs ability to predict
the predictor for the future. In this context, it’s useful to re-iterate the 4 cri-
teria discussed in chapter 2.2 that must be fulfilled in order to ensure reliable
results:

a Strong relationship between the predictor and predictand.

b Model representation

c Description of change

d Stationarity

6.3 Trends

The downscaled results are often in the form of a time series. These can be
subject to further analysis, such as testing for whether the results for one
interval (e.g. the future) is significantly different to that of another (e.g. the
past). Furthermore, a trend analysis can be used to examine the long-term
behaviour described by the predictions (e.g. a general warming or a cooling).

The simplest and most common way to study trends is to fit a linear trend,
e.g. through an ordinary linear regression against time: y(t) = y0 + c1t.

Benestad (2003e) argued that a linear trend may not necessarily be the
best representation of the long-term evolution of a station series, and sug-
gested fitting polynomials of the form y(t) = y0 +c1t+c2t

2 +c3t
3 + ... (Figure

6.2) to give a better representation of the behaviour when an increase or
decrease has not been monotonic. The temperature evolution can resemble
a cubic polynomial more than a linear trend, as seen in Figure 6.2.
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Figure 6.2: A comparison between linear trend (blue) and a polynomial trend
(red).
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6.3.1 Test for trends

Trend testing based on Spearman rank coefficient

Sneyers (1990) considered the rank correlation:

rs = 1 − 6
∑n

i=1(yt − i)2

n(n2 − 1)
,

The null hypothesis was assumed to be that the distribution of rs is asymptotically

Gaussian with:

E(rs) = µ = 0 and var(rs) = σ2 = 1/(n− 1).

The null hypothesis is rejected for large values of |rs|. Two-sided distribution. α1 =

P (|u| > |u(rs)|), where u(rs) = rs
√
n− 1, andH0 is rejected at the level of α0: α1 < α0.

The trend-test is non-parametric, and more information can be found in Press et al.

(1989), 13.8 (p. 536-539).

Mann-Kendall rank correlation statistics

For each element xi the number of ni elements xj preceding it (i > j) is calculated so

that rank(xi) > rank(xj). The test statistic is calculated: t = Σini. The distribution

function of t is assumed to be asymptotically Gaussian with:

E(rs) = µ =
n(n− 1)

4
and var(t) = σ2 =

n(n− 1)(2n+ 5)

72
.

TheMann-Kendall test is two-sided, and H0 is rejected for high values of |u(t)|:

u(t) = [t− E(t)]/
√

var(t),

The trend-test is also non-parametric and suitable for identifying the interval in which

the trend is most pronounced. See reference Sneyers (1990) and the section on Kendall

τ in Press et al. (1989), 13.8 (p. 539-543).

It is important to note that in some cases, the early observations were recorded with

fewer decimal points than at the present. Often, the early temperatures were measured

to the accuracy of 0.1◦C, which for climate series can lead to many values with the same

value: for instance many measurements of 12.1◦C. It will be difficult to determine the

exact rank of such series, as the measurements are not well resolved. A high number of

equally ranked data points in the early part of the record may bias the trend analysis

(Ø. Nordli, personal communications).
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Trend testing based on student’s t-test

The student’s t-test may be used to test whether a linear trend is statistically significant.

This may be done applying the one-sample test on the differenced series: xd(i) =

x(i) − x(i− 1) (time derivatives).

Alternatively, the t-test may be applied to estimate of the linear slope from a regres-

sional analysis: t = (m̂−m0)/(σ̂e/(Σi(xi − x)2), where σ̂2
e = Σi(yi − ŷi)

2)/(n− 2).

Often error estimates and confidence intervals are provided by regression routines in

numerical environments such as R.

6.4 Diagnostics
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Figure 6.3: The spatial pattern of weights for the predictor.

There are several diagnostics that can be obtained from ESD and may
guide the interpreation of the quality of the results. First of all, there is the
spatial distribution of weights, be it regression weights, CCA-pattern or other
type of loadings depending on the chosen technique. The spatial structure
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of these weights should match the physical understanding of the situations
affecting the local climate.

For instance, for a case where SLP is used as predictor for temperature
or rain along the western coast of Norway, the weights should indicate a
NAO-type pattern associated with the advection of mild and moist air from
the west. Often, these weights should have a close resemblance to the maps
of correlation coefficients (e.g. Figure 1.2 in chapter 1), which we will refer
to as ’correlation maps’.

There are other statistics which also give an indication of how good the
ESD-modle is, such as the R2 score, the F -statistic, and the p-value. These
are standard statistics concepts and provide a measure of the closeness of fit
or the theoretical likelihood that the series match by chance.

An additional diagnostic is the study of how the trends in the ESD-results
vary with the seasons. Any abrupt changes may suggest that a potential
problem may be present. One reason may be that the chosen predictor
domain is inappropriate - for instance too large.

6.5 Statistical inference

What is the likelihood that the results from an analytical test may be pure
coincidence? Is a high correlation between the sea surface temperatures in the
North Sea and winter temperature in southern Norway really representative
of the real world, or is it just a one-time fluke? A classical example of
coincidental results is the high correlation between the number of storks and
the birth rate in Germany (Höfer et al., 2004). We will try to find ways to
assess such cases and throw away such spurious results.

6.5.1 Confidence intervals for rejection

A confidence interval (CI) consists of the range of values that describe the
sample uncertainty. The CI may sometimes be regarded as the “inverse”
operation to hypothesis testing.

Typical use of confidence limits is the error bars shown for some sample
statistics.

Data analysis consists of comparing the test statistics against that of the
null distribution. If the probability that these distributions are the same is
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small (subject to sampling fluctuations), then H0 is rejected. In other words,
the CI of a test statistic does not overlap with that of the null-distribution.

Note that not rejecting H0, does not mean that H0 is necessarily true (ref
Karl Popper).

6.5.2 Student’s t-test

One-sided t-test is used to test if the sample mean is significantly different from a

particular value (µ0):

t =
x− µ0
√

s2/n
.

The H0 is that “x = µ0”. A two-sided t-test can be estimated using:

t =
x1 − x2

√

s21/n1 + s22/n2

. (6.1)

The t-test assumes normally distributed data for large numbers of data points, and are

therefore inappropriate for daily precipitation which do not follow a Gaussian distribu-

tion.

For small numbers of data, the t-statistic follows a t-distribution:

f(t;N) =
1√
Nπ

Γ[(N + 1)/2]

Γ[N + 1]
(1 + t2/N)−(N+1)/2.

The t-test formula assumes that each data point is independent of the other measure-

ments, or that there is no serial correlation (autocorrelation) and that the two data

sets are independent of each others.

If the values in the two data sets are correlated, then the denominator of equation 6.1

should be replaced by
√

s21/n1 + s22/n22ρ1,2s1s2/2, where ρ1,2 is the Pearson correlation

between x1 and x2. If the data are serially correlated (non-zero autocorrelation, |a1| >
0), then the variance of each data set should be corrected using a variance inflation

factor: s2i /ni → s2i /ni(1 + a1)/(1 − a1).
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6.5.3 F-statistics

In regressional analysis, a relationship between two quantities, yi and xi is sought, and

there is a need for a measure of goodness-of-fit. Values of xi may be used to make

predictions for yi, which are represented by symbol ŷ(xi). Linear models, ŷ(xi) =

mxi + c, are commonly used in such type of analyses, but these methods also work for

any model ŷ(xi) = f(xi). The model errors, also called the residuals, are defined as

ei = yi − ŷ(xi).

The regression sum of squares (sum of squared differences) is estimated according to:

SSR =

n
∑

i=1

[ŷ(xi) − y]2.

and

s2e =
1

(n− 2)

n
∑

i=1

[yi − ŷ(xi)]
2.

The f-statistic, also known as the F-ratio, F= MSR/MSE = (SSR/1)/(s2e), and is a

measure for the strength of the regression. Here MSR is the predicted mean-squared-

anomaly and MSE is the mean-squared-error.

A strong relationship between yi and xi gives a high F-ratio.

Other measures for goodness-of-fit is the coefficient of determination, R2:

R2=SSR/SST, where

SST =

n
∑

i=1

[yi − y]2.

R2 is 1 for a perfect regression and zero for a completely useless fit (no correlation

between yi and xi).
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6.6 Quality control

There are several ways of testing the quality. One important question is: how
sensitive are the results to slight changes in the ESD set-up? The answer to
this question can be explored by varying predictor domain or varying time
interval.

We can also vary the predictor parameter to test the degree of sensitivity,
but thorough physical understanding is still required in order to be able to
interpret the results. It is expected that some predictors will produce other
results than others, as discussed in chapter 2.2.2.

A useful approach is to examine the difference between the GCM re-
sults and ESD results. Large discrepancies may indicate inconsistencies.
Furthermore, ESD results should be compared with results from dynamical
downscaling and vice versa.

When there is no a priori reason to believe that one method is better
than the other for downscaling the results, it is expected that the different
approaches should provide a consistent picture. Diverging results proves that
at least one of the methods introduce errors.

Downscaling methods and GCMs provide different level of details, but
substantial differences may suggest that there is a potential problem with
some of the models.

Alternatively, there may be changes in the systematic structure of the cli-
mate system, such as changes in the snow-cover, sea-ice, cloud microphysics,
lapse rate, vegetation, wave propagation, storm tracks, etc.

Thus, ESD in conjunction with other methods can be used to identify
such (internal) changes in how the various components of the climate relate
to each other, and the issue of non-stationarity can be used to learn more
about the system. In other words, ESD is an advanced level of data analysis.

Attempts have been made in the clim.pact package to automatically
detect the size by examining the spatial correlation pattern. The function
objDS has been designed for a complete treatment of the predictor choice
and post-process quality control.

Post-process tests can be implemented for examining discontinuities in
the seasonal cycle in trend estimates. We will refer to this kind of test
as ’seasonal trend test’. Figure 6.4 shows one example based on the objDS-
function (see example below). If the test identifies a discontinuity, the quality
control routine re-computes the results for the months concerned, but with
smaller predictor domain size in an iterative fashion.
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Other quality controls involve testing the residuals for time structure
(auto-correlation, trends, etc) of distribution. The residuals from a regression
analysis should ideally have a Gaussian distribution consisting of iid data.

The objDS-function provides diagnostics showing the residuals, the pre-
dictor patterns, the R2-statistics, p-value, and seasonal trend test.

For analog models (chapter 10.3), one diagnostic may be to plot the
distance D with time.
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Figure 6.4: Analysis showing the best-fit linear trend as a function of calender
month (season), with trend estimate along the y-axis and the month on the x-axis.
Here the year has been repeated, showing two cycles, in order to provide a good
description of the change from December to January. The filled regions mark the
confidence intervals of the trend coeffieient estimates, and the blue curve shows the
R2 scores associated with ESD for the particular month. Top: results after quality
control involving re-iterations with smaller domains in the presence of jumps in
trend coefficients; Bottom: before quality control.
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6.7 Model skill

How do we define which model is the best? It may be (i) the model that
yields the best score for one or a small number of stations, or (ii) the model
which produces the highest average score for all stations. The choice depends
on the nature of the problem we want to address with the models.

It is for instance possible to construct empirical models with optimal
skills near the larger cities for estimating scenarios for energy consumption
associated with heating.

There are different ways of measuring skill, such as root mean squared
(RMS) errors, variance accounted for by prediction, or correlation coeffi-
cients2. Again, different skill measures are appropriate for different types of
forecasts.

In a global warming scenario, for instance, we may want to know how
much the local winter temperatures will vary from year to year or how strong
the maximum winds are going to be, e.g. the variance of the predictands.
In this case, it is important to use models which skillfully predict the signal
variance (i.e. where the predicted signal accounts for about 100% of the
observations during the validation period).

6.8 Evaluation techniques

Often we define best skill as the prediction with the highest correlation score.
When the comparing between the CCA and SVD models, we also employ
mean station scores, i.e. the average skill score of the different stations.

A comparison between the average scores is not necessarily a good way
of evaluating comparative prediction skill, as both model types may produce
very good predictions for a small selection of stations and obtain mediocre
and low skill scores for other locations. However, the station mean and
variance may provide the basis for a crude significance test of the model
differences.

Furthermore, a comparison between mean skill scores may give an indica-
tion of how well the two model types can predict large scale climate anoma-

2Other skill scores, such as linear error in probability space (LEPS) and the Brier Score

for probability forecasts (Wilks, 1995) will not be discussed here.



V
er
si
o
n
0
-9

6.8. EVALUATION TECHNIQUES 141

lies. Other skill measures include the root mean square errors (RMSE) and
proportional variance.

The proportional variance score is the ratio of the variance of the pre-
dictions to that of the observations, and is a measure of the predicted vari-
ance but does not necessarily indicate how much of the observed variability
that can be described by the model. For instance, the predictions in some
cases such as for analog models, , the predictions may be associated with
large variance despite being uncorrelated with the observations. In some cir-
cumstances, the variance score for a ’prefect’ prediction can be regarded as
var=100%.

6.8.1 Anomalous correlation
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Figure 6.5: An example of a scatter-plot, showing the empirical and corresponding
ESD predicted values from the calibration period. A high correlation shows up as
points close to the diagonal.
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The anomalous correlation r is ordinary correlation applied to the anoma-
lies, rather than the total value. The presence of a seasonal cycle in the data
often swamps the year-to-year variations, which ESD tries to predict (the
annual cycle is taken from the observations in clim.pact and then super-
imposed onto the predicted anomalies).

A high r signifies a good match, or high degree of similarity, between
two time series. The correlation measures the strength of the relationship
between the predictor and the predictand, thus providing a description of how
well the criteria [a] Strong relationship between the predictor and predictand
in chapter 2.2 is met. Another way of visualising the correlation is through a
scatter plot, as shown in Figure 6.5. The closer the points lie on the diagonal,
the higher correlation.

The correlation does not provide a measure of the magnitude of the dif-
ferences, but only about the phase differences. Furthermore, r is insensitive
to differences in the mean value.

CCA techniques in ESD aim to identify coupled patterns which maximize
the anomalous correlation between a set of station series and the predictors.

6.8.2 The R2 score

Another measure of the strength the R2 score, and the relationship between
this score and the anomalous correlation is: R2 = r2. The R2 score provides
a measure for the portion of the variance that ESD can reproduce. This is the
standard measure of predicted variance used in ordinary regression analysis.
The score is often expressed as a percentage, an R2 score of one being 100%,
which is a perfect reconstruction. If R2 is zero, then the ESD is unable to
reproduce any of the signal in the predictand.

6.8.3 Root-mean-square-error

The root-mean-square-error (RMSE) is another measure of skill, and is com-
puted from the difference between the predictions ŷ and the measurements
y according to:

RMSE =
1

n

n
∑

i=1

(ŷi − yi) (6.2)
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The larger the RMSE, the poorer the forecast. The RMSE does not
provide a clear indication about how much of the variance is recovered by the
ESD or how well the statistical models manage to reproduce the variability.
Furthermore, the RMSE is sensitive to both the differences in mean as well
as differences in the extreme values (since RMSE is sensitive to the difference
squared). Regression techniques aim to minimize the RMSE.

6.8.4 Representative statistical distributions

Standard measures, such as r, R2 and RMSE, provide an index-based mea-
sure of the skill associated with different aspects of the predictions. There
may be different requirements desired from an ESD analysis, depending on
the situation.

Sometimes it is the PDF that is important, rather than the phase infor-
mation. None of the skill measures above provide a good measure of how well
the PDF is recovered in an ESD-analysis. Two variables with perfect correla-
tion or R2-score may have in principle have different distributions (different
mean and standard deviation), and variables with non-negligible RMSE may
have the same PDF.

There are statistics which provide some description of the shape of the dis-
tribution, such as the skewness, kurtosis. In addition, a Kolmogorov-Smirnov
tests or χ2-distribution may provide a means of assessing the similarity of
the predicted and observed distributions.

6.9 Cross-validation

The term independent data is used here to describe data which have not been
used in model calibration (i.e. excluding the target years/months/days from
the model calibration). Thus the model does not ’know’ about these data
when being constructed, and hence comparing the predictions against these
gives a real indication of model skill.

The cross-validation approach, also referred to as ’jack-knife’ in statistical
literature, excludes one data point during the construction of a statistical
model, and subsequently uses the model to predict the value of the predictand
that was excluded from the model calibration (Wilks, 1995; Kaas et al.,
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Figure 6.6: Illustration of how cross-validation is implemented where the first
data point is excluded from the model calibration (upper) and then the next point
is excluded from the calibration batch (lower). The process continues until all
the points have been excluded once, resulting in N different models and model
predictions. The prediction for the independent data are subsequently combined to
be evaluated against corresponding model prediction. Blue symbols show the data
used for model calibration, and blue symbols represent data not involved in the
training of the model.

1998). The data not used for calibration of the model are referred to as
independent data.

The process of excluding one data point is repeated N times, where N is
the total number of observations, and for each iteration different data points
are used as independent data. Figure 6.6 illustrates the process for the first
two data points, where the red data points are the ones excluded during
model calibration and the blue symbols represent the data used to train the
model.
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The cross-validation method implies the construction of N different mod-
els which are based on different combinations of data. Cross-validation is also
referred to as ’jack knife’ approach.

Cross-validation may also be used to examine the data record. If the
calibration provides a high R2-score, but the difference between the predicted
value and the empirical value at time t is great, then it may be an indication
for errors in the observational record at time t.

There are several issues concerning cross-validation. For instance, which
model should one use for making the predictions? Should all the N data
points then be used to make a ’super-model’ used for predictions? One could
examine each of the coefficients from the N different models to see if there
is a large scatter, and take the mean for each as the best estimate for the
coefficients. Furthermore, the spread can be used for constructing error bars
associated with the model parameters.

6.10 Further reading

Osborn and Jones (2000), Hanssen-Bauer and Førland (2000) and van Olden-
borgh (2006) used techniques associated with ESD to diagnose the causes of
regional or local warming. Osborn and Jones (2000) fitted the local variable
to the variations in the circulations, and then analysed the residual series
where the inter-annual to decadal ’noise’ has been reduced.

Hanssen-Bauer and Førland (2000) found that the most recent warming in
Norway could be associated with changes in the circulation, but the warming
in the early 20th century could not attributed to changes in the air flow.

Benestad (2001a) also used a regression analysis to examine whether the
warming in Norway could be attributed a change in the NAO. One useful
tool to assist the interpretation of ESD results is the standard statistical
inference tests, discussed next.



V
er
si
o
n
0
-9

146 CHAPTER 6. PREDICTIONS & DIAGNOSTICS

6.11 Examples
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Figure 6.7: Comparison: cross-validation (red) and best-fit based on the calibration
sample (grey).

Illustration of cross-validation

> library(clim.pact)

> data(addland)

> # Retrieve and pre-process the data:

> locs <- getnordklim()

> ns <- length(locs)

> mT <- rep(NA,ns); d <- mT; x <- mT; y <- mT; z <- mT

> for (i in 1:length(locs)) {

> obs <- getnordklim(locs[i])

> mT[i] <- mean(obs$val,na.rm=TRUE)

> d[i] <- min(distAB(obs$lon,obs$lat,lon.cont,lat.cont)/1000)

> z[i] <- obs$alt

> xy <- COn0E65N(obs$lon,obs$lat)

> x[i] <- xy$x; y[i] <- xy$y

> }

> d[!is.finite(d)] <- 0
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>

> # Demonstration of cross-validation:

> all <- data.frame(y=mT,x=x,y=y,z=z,d=d)

> lm.all <- lm(y ~ x + y + z + d,data=all)

> plot(1:ns,mT,cex=1.5,xlab="data point",ylab="value",main="Cross-validation",

sub="model 1",type="b",lty=2)

> points(1:ns,predict(lm.all),pch=19,col="grey80",cex=0.9)

> grid()

> for (i in 1:ns) {

> calibr <- data.frame(y=mT[-i],x=x[-i],y=y[-i],z=z[-i],d=d[-i])

> x.pred <- data.frame(y=mT[i],x=x[i],y=y[i],z=z[i],d=d[i])

> lm.xval <- lm(y ~ x + y + z + d,data=calibr)

> points(i,predict(lm1,newdata=x.pred),pch=19,col="red",cex=0.7)

> }

>dev.copy2eps(file="cross-val-demo.eps")

Using ESD to validfate cyclone counts

ESD has been used to examine the quality of the cyclone statistics in Ben-
estad and Chen (2006). Since the number of low-pressure systems over a
region scales with the mean SLP, one may expect to see an anti-correlation
between the mean SLP and the cyclone number. Figure 6.8 shows that this
was indeed the case.

> library(clim.pact)

> library(cyclones)

> data(Storms.ERA40)

> nordic <- cyclstat(Storms.ERA40)

> data(eof.slp)

> ds.cyclone <- DS(preds=eof.slp,nordic)

ESD to reconstruct historical climate records

ESD has also been used to examine the precipitation trends in the past
(Benestad et al., 2007). In this case the trend derived from the station
series itself has been compared with the trend obtained when first applying
an ESD-model to predict the local climatic parameter.
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Figure 6.8: Example of how ESD can be used in quality control studies. The
figures show the ESD between the cyclone count over Fennoscandia and the gridded
monthly mean SLP. Upper panel: predicted (black dashed) and observed (grey)
counts; lower panel: predictor pattern. From Benestad and Chen (2006).
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The objDS-function

In the clim.pact-package, the function objDS incorporates many of the ideas
on quality control discussed above. This function is actually an ’overhead’
call to the more basic DS, but also searches for the most appropriate choice
for predictor domain region and subsequently checks if the trends in the
adjacent calender months are similar. Figure 6.4 shows how the trend in the
downscaled results varies with the calender month.

> library(clim.pact)

># Get the predictand:

> oslo<-getnordklim("Oslo-Blindern")

># Get the predictor used for calibration:

> data(DNMI.t2m)

> DNMI.t2m$filename <- "DNMI.t2m"

># Get the predictor used for projection:

> t2m.gcm <- retrieve.nc("~/data/mpi/mpi-gsdio_t2m.nc",

> x.rng=range(DNMI.t2m$lon),

> y.rng=range(DNMI.t2m$lat))

> ds <- objDS(field.obs=DNMI.t2m,field.gcm=t2m.gcm,station=oslo,

> lsave=FALSE,silent=TRUE)

>

>

> ds.map <- plotDS(ds$Jan)

>

> map(ds.map,main="",sub="")

> # Save the graphics encapsulated graphics...

> dev.copy2eps(file="predictormap.eps")
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Figure 6.9: (a) The main results from ESD, the downscaled time series (grey),
shown together with observations (black). (b) The residual time series, one for
each month.
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Figure 6.10: The distribution of the residual data.
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Prediction pattern

The clim.pact command plotDS() produced the diagnostics presented by
the graphics in Figure 6.11. Panel (a) shows the predictor pattern and (b)
the downscaled series for the January month. The following example assumes
that demonstration of the objDS-function (above example) is implemented
first.

> plotDS(ds$Jan)

It is important to consider whether the predictor pattern makes sense
(here the greatest response is centered on the right location). The blue curve
shows the empirical data, grey represents best-fit (i.e. dependent data), and
the red curve presents independent predictions (here based on GCMs). Also
shown in red are the results from a trend analysis, both linear and polynomial.

The plots also provide some statistics, such as the R2 associated with the
model calibration, as well as the associated p-value. The predicted linear
trends are also given together with the associated p-value.

Simple trend-fit

The following example shows how to perform a simple trend-fit for a station
record:

> data(oslo.t2m)

> x <- plotStation(oslo.t2m,mon=c(12,1,2),what="t",type="b",pch=19)

> abline(lm(x$value ~ x$yymm,),col="blue",lty=2)

Scatter plot & correlation

The following example produces the graphic in Figure 6.5. It is assumed here
that the examples in chapter 6.11 have been implemented before these lines.

> plot(ds$Jan$y.o,ds$Jan$pre.y)

> lines(c(-15,5),c(-15,5),col="grey",lwd=3)

> points(ds$Jan$y.o,ds$Jan$pre.y)

> grid()

> dev.copy2eps(file="scatter-plot.eps")
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Figure 6.11: Typical diagnostics produced by the call plotDS. The graphical results
gives the p-value, the R2 score and the trends, as well as visualising the observa-
tions, the calibration fit, and the independent ESD-results.
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6.12 Exercises

1. What is meant by ’cross-validation’?

2. Write a function that estimates the RMSE between two series, using
the R-functions, as shown below.

> RMSE <- function(x,y) {

...

> }

3. Take the station series Bergen, Copenhagen, Stockholm and Oslo and
do a multiple regression using the January temperature in Oslo as the
predictand and the corresponding temperature for the other locations
as predictor. Use the function for RMSE (above) to evaluate the skill
of the predictions.

4. Repeat the exercise above, but using a cross-validation approach. How
do the results compare with above?

5. Compute the EOFs of the DNMI SLP provided in the clim.pact-
package for the January month. Take the PCs as input for a multiple
regression against a station series. Repeat the above calculations with
progressively smaller domains. Compare the results.
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Shortcomings and limitations

Figure 7.1: Uncertainty are due to hidden details which may have a profound
effect on the understanding of the problem. Here the mountains are hidden in
mist.

Shortcomings and limitations associated with ESD represent one source
for uncertainties, however, it is important to keep in mind the fact that there
is a range of sources associated with the projection of a future climate, as
the uncertainty cascades from the estimation of future emissions/forcings,
through biases and shortcomings associated with GCMs, to ESD and errors
in the observations.
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It is difficult due to the complexity and convoluted nature of the models,
to accumulate the errors through this chain of levels, and hence obtain a set
of representative error bars at the end. One approach to estimate the errors
is to run numerical experiments with different settings to estimate the effect
of errors in the model parameters.

Although ESD introduce additional uncertainty, it is believed that they
also have an added value by providing more realistic description of the local
statistics.

It is important to stress that the various downscaling approaches have
different strengths and weaknesses and that one method cannot be universally
considered as the ’best’. Skaugen et al. (2002b) have evaluated results for
Norway from a nested RCM and they found that the RCM did not give
sufficiently realistic descriptions of the local climate as required by many
impact studies. Empirical downscaling can, however, be used to provide
more realistic local scenarios.
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Figure 7.2: Statistical models tend to under-estimate the variance in the predic-
tand.

It is well-known that linear regression (least squares methods) tends to
yield lower variance than the original data (Klein et al., 1959; von Storch,
1999). Figure 7.2 provides an illustration on how the range of values along
the y-axis is reduced if the linear model (red line) is used together with the
range of observed data values along the x-axis.

One way to produce realistic variance levels in downscaling is to employ
analog models (van den Dool, 1995; Zorita and von Storch, 1997, 1999; Dehn,
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1999; Fernandez and Saenz, 2003) instead of linear regression.
In general, ESD suffers from two inherent limitations. The first is associ-

ated with the fact that empirical models that are approximate representation
of links between large scale and local scale variations. Another limitation is
associated with the assumption that the relationship identified with historical
data would hold for the future. In the following we discuss these limitations
and point out ways to deal with the problems linked to the limitations.

7.1 Level of variability

Zorita and von Storch (1997) argue that statistical models tend to only de-
scribe part of the behaviour of the variable to be predicted. The part of the
variability which is not reproduced by the statistical models is referred to as
’noise’ η, while the part that can be simulated is referred to as the ’signal’
y′. Thus, the variable can be regarded as a sum of the signal and the noise:

~y = ~y′ + ~η (7.1)

A statistical model will describe y′, but the variance is 1/n
∑n

i=1 y
2
i =

1/n
∑n

i=1 [y′i + ηi]
2

= 1/n
∑n

i=1(y
′

i)
2 + 2/n

∑n
i=1 yiηi + 1/n

∑n
i=1 η

2
i . The predicted

variance is the first term on the right hand side of this expression, and the remaining

terms 2/n
∑n

i=1 yiηi and 1/n
∑n

i=1 η
2
i describe the degree of underestimation of the

variance.

If the noise term is unrelated to the signal (zero correlation, which is often the case for

optimised models and noise with zero autocorrelation), then 2/n
∑n

i=1 yiηi ≈ 0, and

the statistical model underestimate the variance by 1/n
∑n

i=1 η
2
i .

If, on the other hand, the model is not properly optimised, or the noise has a time

structure (non-zero autocorrelation) then the 2/n
∑n

i=1 yiηi 6= 0 and non-negligible.

Since the climatology is taken as a base line with a well-defined cycle, it
is not needed to downscale this. In ESD the downscaled anomalies do not
describe the same magnitude as the empirical data, in other words, under-
estimating the variance. One fix to this problem has been so-called inflation
measures(von Storch, 1999), although this is generally not a good solution,
as the part of the variations that linear statistical models do not capture
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cannot be associated with the given predictors. The one source commonly
cited when justifying inflation, Klein et al. (1959), but this paper says:

This [inflation] was done simply for the sake of obtaining a valid
comparison between the two forecasting methods, and it should
not be construed that this is necessarily the best objective method
of forecasting temperature classes.

One reason may be that there may be unaccounted-for factors influenc-
ing the small-scale variable. When inflation measures have been invoked,
the downscaled results has typically been scaled by the ratio of standard
deviations for the empirical data to the downscaled results.

There are some examples where the predictions have been ’inflated’ by
scaling the variance of the predictions so that they describe the same variance
as the original data. Zorita and von Storch (1997) argue that this is wrong
because the results then are not consistent with the large-scale forcing.

von Storch (1999) also caution against the use of ’inflation’ in ESD, how-
ever, it is also apparent from the simple maths done above that a simple
scaling does not constitute a sound procedure, as this would entail neglect-
ing the noise all together through the process of scaling, yet saying the error
is a problem - otherwise there would not be a need of re-scaling.

Another way of looking at it, is that we now for sure that the statistical
model cannot account for the noise part, so if the prediction is re-scaled, then
we throw away this information.

The problem of reduced level of variance in the predictions is an important
obstacle to predicting extreme events and exceedance over threshold values.
Hence, other solutions are required downscaling extremes, and these will be
discussed in later chapters.

7.2 Model stationarity

We have already mentioned model stationarity, and by investigating the
uncertainties in the model coefficient estimates from different calibration data
combinations, a crude picture of how the models depend on the training
period is emerging.

The fact that model skill varies with the season demonstrates that the
relationship between predictors and predictands is not constant throughout
the year. but the skill may also vary with the external conditions.
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Another problem is that the PCA results for the present climate, on
which our models are based, may not span the data space that corresponds
to a global warming scenario. The issue of non-stationary EOFs may be
a problem if there is a sudden change in the large scale circulation in the
future.

7.2.1 ’Perfect model’ simulation
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Figure 7.3: Example of a ’perfect model simulations’ where the large-scale SLP
from the GCM has been used to (a) calibrate the ESD model for the first half of
the simulation interval, and then (b) used as input to predict for the second half.
From Benestad (2001b)

So-called ’perfect model simulations’ (also referred to as ’perfect model
study’) entail examining the relationship between the large and small scales
in a GCM. One grid-point in the GCM is taken as the predictand and a
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region represented by several grid boxes as the predictor, and half of the
simulation is used for calibrating the ESD-model describing the relationship
between the large-scale GCM predictor and the grid-point predictand.

Any changes in the large-scale situation (predictor) and the local variabil-
ity (predictand) simulated by the GCM, should in principle be identified in
such a test. Figure 7.3 shows an example of such a test, and the divergence
between the grid-point value plotted for the independent data and the ESD
results, suggest that the SLP-based model in not stationary.

7.2.2 ’Historical’ simulation

18
50

19
00

19
50

20
00

0

500

1000

1500

Bergen: reconstruction from gridded SLP

clim.pact: DNMI.slp (Benestad & Melsom, 2002, Clim. Res.,Vol 23, 67−79)
Time

Se
as

on
al 

ac
cu

m
. p

re
cip

ita
tio

n 
(m

m
/m

on
th

)

18
50

19
00

19
50

20
00

0
50

100
150
200
250
300
350

0
50

100
150
200
250
300
350

0
50

100
150
200
250
300
350

0
50

100
150
200
250
300
350
400

Reconstr.    
Predict     
Station     
ERA40     

DNMI: DJF: R2= 49 − 74 %     

DNMI: MAM: R2= 60 − 70 %     

DNMI: JJA: R2= 30 − 45 %     

DNMI: SON: R2= 59 − 71 %     

Calibration interval

ERA40: DJF: R2= 61 − 87 %     

ERA40: MAM: R2= 46 − 82 %     
ERA40: JJA: R2= 68 − 75 %     

ERA40: SON: R2= 78 − 90 %     

Figure 7.4: An example of a ’historical simulation. The data in the interval shown
as grey hatched region were used to calibrate the model and the data outside this
region represent the independent evaluation data. From Benestad et al. (2007).

In a ’historical simulation’ (also referred to as ’historical study’ ), the
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relationship between the large and small scales in the past is examined. This
type of exercise is analogous to the perfect model simulation, but now the
gridded observations are split into calibration data and independent data for
evaluation. Furthermore, a station series can be used instead of a grid-point
value.

In order to investigate the model stationarity further, the data can be split
in two, where the first subset is used for model calibration and the second
subset for evaluation. If the global temperatures for calibration period are
lower than the validation period, and thus using a warmer validation period,
this then provides a good test to investigate the stationarity of the models
in a slowly warming climate.

7.2.3 Minimising risk of non-stationarity

If the ESD is based on physical considerations, taking all relevant factors
into account, then one may in theory reduce the risk of non-stationarity.
One should therefore always try to use predictors and predictands with the
same physical units (see chapter 2.2.2).

ESD should embody a physical causality, and ideally represent a physical
expression:

y = x (7.2)

This could also be seen as a ’dimensional analysis’ common for the field of
physics, where the object is to obtain an expression where physical units on
the left hand side of the equation matches those on the right hand side. If the
physical units are not the same, then the risk is greater that the relationship
may be coincidental and not physics-based, and that the relationship may
not hold in the future.

7.2.4 Consistency

One important aspect of ESD is the question whether the ESD results are
broadly consistent with the GCM results. In principle, the ESD serves to
refine the details, rather than producing a completely different picture. Thus,
an appropriate consistency check may help answering the question if the ESD
correctly represent the links in a different climate.
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However, strong local effects and non linear relationship may exist, which
can lead to considerable difference between ESD results and GCM simula-
tions in some cases.

Figure 7.5: Satellite images (from Google Earth) showing different landscape types.
Different types may involve different local processes such as exchange of moisture,
heat, momentum, aerosols, in addition to affecting the radiation budget (albedo).

The GCM’s ability to represent of the large-scale structures associated
with the predictors is important. This consideration has led argument that
the predictors should be taken from the free troposphere rather than the sur-
face layer (Huth and Kyselý, 2000; Easterling, 1999), as the dynamic response
(e.g. the geopotential heights) in the free troposphere is often perceived to
be more skillfully reproduced by the GCMs.

Furthermore, climate models often have shortcomings when predicting
the vertical profiles near the surface.

Surface processes furthermore tend to take place on small spatial scales,
and are therefore often parameterised. Older climate models have treated
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surface processes with less sophistication than the state-of-the-art models,
and there are still substantial uncertainties associated with the description
of the land and surface influences.

On the other hand, ESD based on upper-air predictors may be more sus-
ceptible to non-stationarities if there are different trends at different heights
(Benestad, 2005). Furthermore, the use of upper air predictors may lead to
very different results (trends) than surface predictors (Benestad, 1999c).

Diverging results also tend to be a sign of inconsistency between the
GCM and the ESD results, and brings up the question of which is more
credible. It may therefore be a good idea to apply ESD to both upper-
level predictors and surface predictors just because these possibly may yield
different answers. If the different results are inconsistent, then there may be
errors in the GCM representation of these fields or the GCM may suggest
that a climate change may alter old statistical relationships between different
vertical levels (heights).

Thus, conducting ESD on different predictors and at different heights
may shed more light on what is going on during a climate change. When the
results do indicate inconsistencies, the exercise should repeated for historical
study as well perfect model study.

Usually it is not possible to use corresponding physical quantities for
predictors and predictand if the predictor variables are taken from the free
atmosphere. Nevertheless, it’s a useful test to repeat the ESD analysis with
different predictor choices, e.g. from higher levels, if several variables provide
a strong relationship. Differences in the results may indicate that there are
changes in the system, e.g. in the vertical profiles (lapse rate), and hence
provide further insight.

Other issue in ESD include the choice of region for which the predictor is
representative (henceforth referred to as ’predictor domain’) and the question
regarding actual scale versus the size of the domain. The actual scale of the
predictor doesn’t change by choosing a larger predictor domain, and the
spatial smoothness of the predictor variable should be an important aspect
determining the latter.

7.2.5 Take home messages

• ESD is based on the assumption of a strong relationship between the
predictor and predictand.
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• ESD assumes that the statistical relationship between small-scale and
large-scale parameters is stationary.

• ESD only brings added value when the large-scale parameters can be
skillfully represented by the GCMs.

• The predictors must carry relevant signal, e.g. the global warming
signal.
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7.3 Examples
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Figure 7.6: Example of results obtained by splitting the data into two parts: one
for calibration and for independent evaluation. The analysis is done twice for each
set of predictors, using swapping the calibration and evaluation parts, and then
the predictions for the independent data are merged. The exercise is doen for the
large-scale precipitation as predictand, the SLP, and a mixed precipitation-SLP
field. The code for making this plot is given below.

> library(clim.pact)

> x.rng <- c(-10,40); y.rng <- c(50,75)

> load("ERA40_slp_mon.Rdata")

> load("ERA40_prec_mon.Rdata")

> obs <- getnordklim("Bergen-Florida",ele=601)

> mix <- mixFields(prec,slp)

> eof.pre <- EOF(prec,lon=x.rng,lat=y.rng,mon=1,plot=FALSE)

> eof.slp <- EOF(slp,lon=x.rng,lat=y.rng,mon=1,plot=FALSE)
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> eof.mix <- EOF(mix,lon=x.rng,lat=y.rng,mon=1,plot=FALSE)

> cal <- (eof.pre$yy < 1976)

> eof.pre$id.t[cal] <- "first"

> eof.slp$id.t[cal] <- "first"

> eof.mix$id.t[cal] <- "first"

> ds.pre.1 <- DS(obs,eof.pre,cal.id="first",plot=FALSE)

> ds.slp.1 <- DS(obs,eof.slp,cal.id="first",plot=FALSE)

> ds.mix.1 <- DS(obs,eof.mix,cal.id="first",plot=FALSE)

> cal <- (eof.pre$yy > 1984)

> eof.pre$id.t[cal] <- "second"

> eof.slp$id.t[cal] <- "second"

> eof.mix$id.t[cal] <- "second"

> ds.pre.2 <- DS(obs,eof.pre,cal.id="second",plot=FALSE)

> ds.slp.2 <- DS(obs,eof.slp,cal.id="second",plot=FALSE)

> ds.mix.2 <- DS(obs,eof.mix,cal.id="second",plot=FALSE)

> ts.pre.1 <- ds2station(ds.pre.1)

> ts.pre.2 <- ds2station(ds.pre.2)

> ts.slp.1 <- ds2station(ds.slp.1)

> ts.slp.2 <- ds2station(ds.slp.2)

> ts.mix.1 <- ds2station(ds.mix.1)

> ts.mix.2 <- ds2station(ds.mix.2)

> t.pre <- mergeStation(ts.pre.1,ts.pre.2)

> t.slp <- mergeStation(ts.slp.1,ts.slp.2)

> t.mix <- mergeStation(ts.mix.1,ts.mix.2)

> plot(c(1955,2002),c(0,550),type="n",ylab="mm/month",

> main="Bergen January precipitation")

> lines(rep(1976,2),c(0,550),lty=1,lwd=3,col="grey")

> lines(rep(1984,2),c(0,550),lty=1,lwd=3,col="grey")

> plotStation(obs,what="t",add=TRUE,type="b",pch=16,lwd=2,

> lty=1,l.anom=FALSE,mon=1,trend=FALSE,std.lev=FALSE)

> plotStation(t.pre,what="t",add=TRUE,col="grey50",type="b",

> lty=3,l.anom=FALSE,mon=1,trend=FALSE,lwd=1,pch=15,

> std.lev=FALSE)

> plotStation(t.slp,what="t",add=TRUE,col="red",type="b",pch=18,

> lty=3,l.anom=FALSE,mon=1,trend=FALSE,std.lev=FALSE)

> plotStation(t.mix,what="t",add=TRUE,col="blue",type="b",pch=17,

> lty=3,l.anom=FALSE,mon=1,trend=FALSE,std.lev=FALSE)

> legend(1957,550,c("Obs","PRE","SLP","MIX"),

> col=c("black","grey50","red","blue"),lty=c(1,3,3,3),

> pch=c(16,15,18,17),lwd=c(2,1,1,1),bg="grey95")
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> dev.copy2eps(file="esd_ex6-1.eps")
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7.4 Exercises

1. discuss the various sources for uncertainty in ESD work.

2. Why can it be a good idea to use more than one predictor variable?

3. Write a short R-script to downscale the January temperature in Oslo
for the period 1980 and onwards, using only the data prior to 1980
for calibration. Use data(oslo.t2m) and data(DNMI.slp) to provide
the predictand and predictor. Plot the results. Use the example given
above as a guide to writing the code.

4. Repeat the exercise above, but now you use interpolated values taken
from the gridded temperature as predictor instead of actual station
measurements. Use the lines provided below as a guide to interpolate
gridded T2m to the coordinates of Oslo.

> data(DNMI.t2m)

> data(oslo.t2m)

> oslo.dnmi <- grd.box.ts(DNMI.t2m,lon=oslo.t2m$lon,lat=oslo.t2m$lat)

5. Compute EOFs for January SST, T(2m), and SLP (Use data(DNMI.xxx)).
Choose some locations from the NARP data, and use DS() to down-
scale the temperature from the three different predictors respectively.
Compare the results. Repeat for precipitation.
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Reducing Uncertainties

Figure 8.1: Living with uncertainties: although it is impossible to predict the exact
shape and position of these condensation drops, it is nevertheless trivial to predict
whether condensation drops form or not.

It is crucial to know how well local climate statistics can be predicted
before using it to make future climate scenarios. It is therefore necessary with
an evaluation of both the global coupled general circulation model (GCM)
results as well as the methodology that infers changes to local climates from
the information in the GCM results.

We want to focus on the optimal models which are calibrated on a selection

169
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of EOFs that maximise the prediction skill. The purpose of developing these
statistical models is to produce regional climate scenarios from given global
general circulation model (GCM) results, and we will discuss the suitability
of the ESD models for such applications.

8.1 Cascading uncertainties

Climate change modelling for the future is associated a number of different
sources of uncertainty, starting with the fact that nobody knows what the ex-
ternal forcings will like in the future. The continuing emission of greenhouse
gases may change as a result of changed human behaviour, economics, pol-
itics, or access to resources. In addition, natural forcings such as volcanoes
and solar activity may affect the future state of external forcing.

Then the GCMs themselves are not perfect, and unknown biases and
errors constitute a significant source of uncertainty. Downscaling introduces
further uncertainties, because the ESD is non-perfect, GCMs are non-perfect,
and the observed records may contain errors.

ESD may, on the other hand, also correct some systematic biases in the
GCM, such as biases in the mean, but this depends on the ESD strategy.
Since we are concerned with ESD here, we will look more closely into how
we can reduce the uncertainties associated with downscaling.

We will also discuss how the calibration diagnostics can be used to provide
a picture of how well the ESD models perform.

The error sources associated with conventional empirical downscaling
based on EOF products can be expressed as the sum of GCM misrepresen-
tation (systematic errors: eGCM), errors due to mismatch between observed
and simulated climatic patterns (observed EOFs not spanning the data space
of the model results and sampling fluctuations in the observations: epattern),
errors associated with the empirical model (linear approximation: eΨ), and
natural variability (enoise):

etot = eGCM + epattern + eΨ + enoise. (8.1)

Although the second term, epattern, also relates to systematic GCM errors,
it has been separated from the former term and defined as the additional
errors introduced by uncertainties related to the identification of observed
spatial structures in the GCM model results.
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In mathematical terms, EOFs of the observations may not necessarily
span the data space of the model results. This may be true even if the
model is perfect, as both observational record and model predictions are
finite records, and the best EOF estimates of a finite time series may not be
the same as the true EOFs because of sampling fluctuations (North et al.,
1982).

In the case of Benestad (1999c), epattern mainly comes from uncertainties
associated with the regression of simulated climate patterns onto observed
spatial climate structures, and the comparison between the common EOF
and the EOF projection method suggests the trend error is of the order
0.1◦C/decade. The common EOF method eliminates the error term epattern.

Benestad (1999c) argued that by using best-fit trend estimates for long
time intervals, the fluctuation errors associated with enoise can be reduced to
a minimum and systematic errors associated with the use of inappropriate
control integrations can be eliminated.

The remaining errors mainly can be attributed to systematic GCM bi-
ases and shortcomings of the linear assumption that the temperatures were
linearly related to the SLP fields, ~y = Ψ~x.

8.2 De-trending in the calibration

The presence of trends in two different data trends will affect the fitting
of the models. However, it is not guaranteed that the different trends are
related to each other. De-trending refers to the procedure of removing these
trends. The statistical models are then calibrated with the de-trended series,
for which the degrees of freedom are high and the risk of coincidental false
matching is much lower than between two trends.

It is important to eliminate elements which can bias the results. Regres-
sion analysis aims to minimise the RMSE between two data series, and as
a consequence, will always find a trend which gives the optimal RMSE fit
between the two curves. A best-fit with non-zero trend may not necessarily
be representative of a physical link if either quantity is a function of more
than one factor.

The relationship between the two long-term trends may be due to coinci-
dence, and can in worst case lead to invalid conclusions as shown in Benestad
(2001a). Non-zero trends can also bias correlation analyses. Hence, best-fit
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analysis between two records that have non-zero trends may give a biased
best-fit, and the time series should be de-trended prior to the analysis in
order to obtain an unbiased best-fit.

If there is a real (and linear) relationship between the two quantities, then
a regression model based on the de-trended series should also capture the re-
lationship between their respective long-term trends. In simple mathematical
terms, the time series can be expressed as the sum of a de-trended part and
a linear trend: x(t) = xd(t) + xt(t), where xt(t) describes the linear trend in
x(t) and xd(t) is the de-trended part. Hence the linear model y(t) = ax(t)
implies that yd(t) + yt(t) = a(xd(t) + xt(t)) and that the coefficient a is the
same for the de-trended records and the linear trends.

It is important to only de-trend the calibration data, and not the data
used to project into the fuuture (no trend in the data, will presumably give
no trend in the ESD results).
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Figure 8.2: Illustration of Huth’s paradox.

Radan Huth argues that there is a paradox in the downscaling, as the
models are calibrated with short-term variations and used to make predic-
tions for long-term changes. He illustrates this by showing that two series
may have a very high correlation, but different long-term behaviour, such as
trends (Figure 8.2).

In such cases, statistical models may not capture the long-term variability,
and one classical example of such shortcomings is where SLP is used to model
the temperature (Hanssen-Bauer, 1999; Benestad, 2002a, 2001a).
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By de-trending, the situation is not improved, and Huth’s paradox may
be used as an argument against de-trending. However, if we do not know a
priori whether the trend is part of the signal or caused by other irrelevant
factors (a question of attribution), then the safest bet is still to focus on
the short-term variations as they represent a higher degree of freedom and
smaller chance accidental good fit.

Furthermore, the issue of capturing the long-term behaviour is addressed
by the four assumptions discussed in chapter 2.2.1: in addition to a strong
relationship, the predictors must be representative of the local changes and
must give a description of the change and the relationship must be stationary.

8.3 Using different predictands

Benestad (1999c) found that the downscaled future climate scenarios were
sensitive to the selection of stations that was included in the predictand
data set. The empirical models are optimised with respect to the predictor
patterns and this sensitivity was explained in terms of different circulation
patterns influencing different locations and that the model was over-fit for
some stations.

Benestad (1999c) also speculated whether the matching between observed
and simulated climate patterns was sensitive to the choice of predictands.

Similar to the results of Benestad (1999c), which were based on spatial
pattern projection between simulated and observed modal structures, the
various combinations of predictands yielded different results for a given sta-
tion common to the various predictand groups. Benestad (1999c) suggested
that these differences may be related to imperfect pattern recognition, how-
ever, the presence of such differences in the results based on the common
EOF method rules out an imperfect match. Some of these discrepancies
may, however, be due to noise and the uncertainties of fitting a best-fit linear
trend to short time series.

8.4 Optimal number of predictors

In the development of the statistical models, it is important to find the
optimal number of predictands that yields the best prediction scores. The



V
er
si
o
n
0
-9

174 CHAPTER 8. REDUCING UNCERTAINTIES

number and type of predictors must be selected carefully in order to maximise
the skill and avoid overfitting (Wilks, 1995, p.185).

For instance, combinations of noise or signals unrelated to the predicted
quantity may give a good fit to the data used in the training of the model,
but will usually not produce good predictions.

One method to construct models with optimal skill and avoid overfit
involves cross-validation and the use of a screening technique to estimate the
optimal number of predictors.

8.5 Trends v.s. time slices
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Figure 8.3: Spectrograms for the monthly temperature in Oslo (left) and central
England temperature (CET; right) show a strong annual cycle but also a degree of
decadal variability.

Natural decadal variations tend to be pronounced in some regions (e.g.
northern Europe), and since these are regarded as chaotic, it is impossible to
reproduce the exact time evolution. Figure 8.3 shows a spectrogram for the
Oslo temperature, revealing pronounced variations on time scales of 10 years
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and longer. Thus there is some uncertainty associated with the question
whether a year is in a warm or cold decade.

If multi-model ensembles are used, then this error can be reduced due to
the fact that the time slices from each different model may be dominated
by different state on decadal time scales, thus providing a larger statistical
sample.

The term ’linear trend’ is in this context used to mean the long-term
temporal evolution of a given quantity, and is estimated through the linear
regression in time (t): ŷ(t) = c0 + c1t.

Machenhauer et al. (1998) argued that the sampling errors associated
with selecting random 10-year to 30-year time slices for the MPI CTL were
less than 2K for temperatures and less than 40% for precipitation. However,
as there were sampling errors in both CTL and the scenario integrations,
it is necessary to combine the fluctuation errors of the individual data sets
(∆T ≈

√

(2K)2 + (2K)2 ≈ 3K).
Machenhauer et al. (1998) argued that the sampling fluctuations were

smaller than the systematic biases1. Dynamical downscaling based on 10-
year long time slices are prone to high sampling uncertainties, as the signal
magnitude is of the order of 1-3K which is also similar to the sampling errors.

Benestad (2001b) suggested a more robust method for deducing climate
change with empirical models by trend fitting (see e.g. Figure 6.11). But
trends are not always well-defined (Benestad et al., 2007), and it only makes
sense to talk about trends if they really provide a representative description
of the behavious of the time series.

8.6 Domain choices

Huth (2002) concluded that for the explained variance derived from a cross-
validation, the size of the domain on which the predictors are defined plays
a negligible role.

1A systematic error was defined as a bias which is essentially independent of the sample

(time slice) chosen. However, estimating systematic errors from 10 to 30-year long time

slices may easily be contaminated by decadal and inter-decadal variability (Benestad et al.,

1999).
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a) January T(2m) trends

as a function of domain size (cEOF: x; project: o)
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b) April T(2m) trends

as a function of domain size (cEOF: x; project: o)
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c) July T(2m) trends

as a function of domain size (cEOF: x; project: o)
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d) October T(2m) trends

as a function of domain size (cEOF: x; project: o)
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Figure 8.4: Trend estimates as a function of the domain choice for January,
April, July and October. From Benestad (2001b). Grey represent ’Perfect prog’
and black common EOF-based approaches.

Benestad (2001b), on the other hand, demonstrated that the choice of
domain may influence the trend estimates derived through ESD for temper-
ature in Norway (Figure 8.4). Moreover, when using a large domain which



V
er
si
o
n
0
-9

8.6. DOMAIN CHOICES 177

included a dipole pattern with both positive and negative corrrelations, Ben-
estad (2002b) found that ESD could result in negative temperature trends
despite a global warming.

−50 0 50

−
0.

5
0.

0
0.

5

15E/60N

deg N & deg E

Figure 8.5: Correlation map (left) and the north–south and east–west profiles (left)
of the spatial correlation (along the faint yellow dotted lines in the left panels).

The most recent versions of clim.pact include a function objDS that tries
to minimize the errors associated with the domain choice, and automatically
identifies a rectangular (in the longitude-latitude coordinate system) region
on the basis of a correlation map between the predictor and predictand (Fig-
ure 8.5). The algorithm then extracts the north–south and east–west profiles
of the correlation structure, and the predictor region is then defined as where
the correlation along these profiles is greater than zero (marked as vertical
lines in the right panel in Figure 8.5).

Smaller geographical predictor domains often yield the best cross-validation
scores, which is according to the expectations. The highest scores, and hence
the smaller predictor domains, were associated with the highest trend esti-
mates.

Despite the higher scores, a small predictor domain size does not neces-
sarily ensure a more realistic scenario, because small scale climatic features
are expected to suffer more from GCM model errors than patterns with larger
scales. Therefore, there is no way of telling whether the higher trend esti-
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mates are more realistic or due to model misrepresentation of the SLP over
Scandinavia.

8.7 Spatial coherence

After having compared ESD based on various regression- and CCA-based
strategies, Huth (2002) concluded that the spatial correlations are reproduced
most closely by CCA and the correspondence is best when more modes are
included. He compared both regression with and without step-wise screening
(“stepwise regression” and “full regression” respectively).

8.8 Projection of EOFs

In order to identify the same spatial structures in a GCM as those which are
linked to the predictand in the gridded observations, it is possible to project
the model data onto the observations. Schubert (1998) did this by projecting
the EOFs of the GCM results onto those of the observations.

It is particularly important to keep in mind that the order of the EOFs
may be somewhat arbitrary for the second, third, and higher order modes,
since their spatial structure must be orthogonal.

The character of the EOF products furthermore is subject to sampling
uncertainties. Therefore, one cannot assume that the leading EOF computed
for the GCM results correspond to that derived from the observations, the
second EOF from GCM corresponds to the second mode in observations, and
so on.

The process of projection, however, implies introducing a new statistical
model to the analysis, and hence a further reduction of the predicted variance
(see section 7.1). Thus, the common EOF framework is more robust (Figure
8.4).

8.9 The common EOF frame

A large degree of uncertainty is associated with the downscaling of the GCM
results, and one important question is whether the errors associated with the
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Figure 8.6: A schematic illustrating the common EOF method. Here, y denotes
the predictands (station observations) and x are the predictors taken from the
common EOF PCs. First, the PCs corresponding to the observations and station
data are used for model calibration, then the corresponding PCs from the GCM
model results are used for predictions.
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downscaling can be reduced. One method to ensure a good correspondence
between the model and observed spatial structures is to calculate common
EOFs (Barnett, 1999).

It is possible that this method may eliminate some of the uncertainties
associated with the observed-model pattern mismatches if these common
EOF structures are used as a basis for the ESD models.

The advantage with the common EOF method is that they are eigen-
vectors which are assured to span both the observed and model data space.
For conventional EOFs, on the other hand, there is no guarantee that the
observed EOFs span the data space of the model results.

The common EOF method involves the use of the principal components
(PCs) from the common EOF analysis in a regressional type analysis. The
PCs from the common EOF analysis can be regarded as two parts: the
observations and the model results.

As the PCs represent the temporal evolution of the same spatial patterns
(modal structure) in both the observations and the model results, the empir-
ical model obtained with the part of the PCs describing the the observations
can be applied directly to the model results (the remaining part of the PCs).
Figure 8.6 illustrates the process of training the empirical model and then
using the model in conjunction with the model PCs to make predictions.

There are various ways to apply common EOFs to downscaling, as there
are with more conventional methods, and there is no clear a priori optimal
method. The empirical models can be based on either a canonical correla-
tion analysis (Benestad, 1998a, 1999c), singular value decomposition (SVD)
(Benestad, 1998b) or multi-variate regression (MVR) (Benestad, 1999b). All
these model types can be trained with the leading common EOFs through
stepwise screening calibration (Kidson and Thompson, 1998; Wilks, 1995),
in which the contribution of each PC is evaluated through a cross-validation
analysis (Wilks, 1995).

Only those that contribute to the cross-validation skill are then included
in the predictor data set. This approach reduces the risk of over-fitting the
models and simultaneously extracts as much useful information as possible
from the predictor data (optimizing eΨ).

Furthermore, the common EOF framework is also ideal for non-linear
downscaling, ~y = Ψ(~x), such as neural networks and classification schemes.
Together with estimating the long-term mean change by best-fit of linear
trends for given long intervals, the common EOF method provides a sound
strategy for future empirical downscaling.
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Figure 8.7: An illustration of how the RCM results are adjusted in order to ensure
that the PCs describing the RCM control-period (CTL) have the same location and
spread as the observations. The adjustment consisted of centering and scaling the
CTL part of the PCs to match the ERA-15 data, i.e. subtracting the mean value for
the CTL part, multiplying with the fractional standard deviation (sERA-15/sCTL),
and adding the mean for the part of the PCs representing ERA-15. Panel a) shows
a scatter-plot between PCs 1 and 2 for the observations and the unadjusted results
for the CTL, whereas b) shows the adjusted PCs. The example shown here is taken
from Imbert and Benestad (2005).

Adjustment & bias corrections

The use of common principal components has to the authors’ knowledge only
recently been introduced in empirical downscaling (Benestad, 2001b), and
this new type of reference frame allows for a simple ’correction’ of systematic
biases in the climate model results. This correction entails an adjustment of
the model results and involves forcing the mean value and standard deviation
of the PCs describing the GCM/RCM for the “present-day” climate (control
period, or ’CTL’) to be the same as in the observations, and then use the
same offset and scaling for the future. The adjustment process is illustrated
in Figure 8.9.

For some fields, such as T(2m), an adjustment correcting for system-
atic model biases is required in order to obtain realistic distributions in the
downscaled results. As described in the method section above, the adjust-
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ment consisted of setting the mean and standard deviation of the part of
the PCs describing the CTL to the same values as those of the observations
(downscaled ERA-15).

The adjustment forces the CTL from RCMs to have similar features as
those observed in terms of the location and spread of the PCs. The PCs
describe the weighting of the empirical orthogonal functions (EOFs) (Lorenz,
1956; North et al., 1982; Preisendorfer, 1988) for the combined data, and
hence the common spatial climatic patterns for both ERA-15 and the RCM.
A large offset or a scaling factor substantially different from unity is an
indication of substantial systematic bias in the RCM results. The offset and
scaling factor can be used for comparing the RCM skill.

8.10 Further reading

Benestad (2001b) found a greater sensitivity of the trend estimates on the
choice of domain when the EOFs from the GCMs were projected onto those
of the observations, than if a common EOF frame was used (Figure 8.4).

Benestad (1999c) used global climate change simulations from coupled
general circulation models (GCMs) and empirical downscaling models in an
attempt to predict changes to the local climate. Although the GCMs gave
a good reproduction of the large scale geographical climate patterns, the
matching of observed and simulated spatial patterns introduced additional
uncertainties and the possibility of additional errors. Benestad (2001b) then
evaluated a technique which aims to eliminate these additional error sources
by using common empirical orthogonal functions (common EOFs) (Barnett,
1999), referred to as the common EOF method.
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8.11 Examples

8.11.1 Illustration of Huth’s paradox

> t <- seq(0,8*pi,by=0.1)

> y <- 0.02*t + sin(t)

> x <- sin(t)

> plot(y,pch=19,col="red",ylim=c(-1.5,1.5),

main=paste("Correlation",round(cor(x,y),4)))

> grid()

> points(x,pch=19,col="blue")

> dev.copy2eps(file="huth-paradox.eps")
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8.12 Exercises

1. How can effors in GCM simulations influence results of ESD?

2. It is possible to identify which ESD models fits the historical data best.
But is it possible to say one ESD model is better than another for the
future climate change scenarios?

3. Use DS() to downscale temperature using the sample data provided in
clim.pact and DNMI.t2m. Repeat the exercise by using successively
smaller predictor domains. compare with a regression against a grid
point value. compare the results (time series and the R2-scores).

4. Repeat the exercise using different predictor domains and DNMI.sst.

5. Compute EOFs for a GCM and for corresponding gridded observations.
Compare the spatial modes of EOFs 1–4. comment on what you see.
Repeat with different variables.
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Downscaling Extremes & PDFs

Figure 9.1: Water falls can be viewed as an extreme behaviour in a river flow if
one looks at the flow velocity, with completely different character than in the rest
of the river. Yet the two aspects are related, as the through-flow of water mass
in the water fall must match that in any other part of the river, even the more
quiescent parts.

Climate and weather extremes have been the subject of study in the
EU project STARDEX (http://www.cru.uea.ac.uk/cru/projects/stardex/)
under the Fifth Framework Programme (2002–2005) as one of its overall
objectives is to “provide scenarios of expected changes in the frequency and

185
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intensity of extreme events”. The scientific objectives encompasses the iden-
tification of robust methods for inferring extreme events through downscaling
and providing a standard set of indices describing extremes in Europe.

Methodologies for statistical downscaling or modelling extremes are often
invalid under changing conditions, but one approach involving computation
of a set of indices or upper/lower percentiles may be one solution. Alter-
natively, the recurrence of records and trends in extreme-event counts or
threshold analysis (Benestad and Chen, 2006) can provide useful diagnos-
tics.

9.1 Outliers and Extremes

Real data often contain errors of various sorts. These may be due to instru-
mental failure, contamination, mis-typing, etc. Some data have values which
are significantly different to that of the bulk of the data. These extreme
values are referred to as outliers, and may affect various statistics severely
(i.e. the standard deviation).

Extreme climatic events may have severe impacts on the society, economy,
and the ecosystems, and are often the focus of risk management. For instance,
hydroelectric dams may sustain water up to a critical level: how often can
one expect high rainfall to cause the water level to exceed this threshold?

Extremes often do not go unnoticed, as they may have a severe effect
on the environment and the society. For instance, the nearby presence of
a hurricane or a typhoon is hard to miss. Thus, extremes may often have
independent verifications in terms of their implications, although it is harder
to provide independent estimates of the exact magnitudes.

9.2 Robustness and Resistance

Sometimes “robustness” and “resistant” have different meanings (Wilks, 1995).
“A resistant method is not unduly influenced by a small number of outliers,
or wild data”(Wilks, 1995, p. 22). On the other hand, a robust result
does not hinge on the exact method used to derive it, and a robust method
performs reasonably well in most circumstances, but is often not optimal.
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A robust method, according to Press et al. (1989), is insensitive to small
departures from idealised assumptions for which an estimator is optimised.
“small”: i) fractionally small departures for all data points; ii) fractionally
large for a small number of data points (outliers). The is essentially the same
meaning as Wilks (1995) “resistant method”.

9.2.1 Estimators

Estimators are used to derive values for parameters used in statistical models
or measures (e.g. models for the statistical distributions).

M-estimates: follow from maximum-likelihood. E.g. least-squares. Of-
ten assume that the data are normally distributed (often not a good assump-
tion for daily rainfall).

L-estimates: linear combinations of order statistics (i.e. median, quan-
tiles).

R-estimates: based on rank tests, i.e. the inequality of two distributions
can be estimated by the Wilcoxon test.

9.3 Probability density functions

Before proceeding we should stop and think about what probability density
functions (PDFs) represent. To illustrate the use of PDFs, let’s pretend we
have a record of some climate variable and want to know: How often do we
get months which are hotter than 30◦C? Or: How often do droughts recur?
In order to answer this, one may look at the distribution of the temperatures
or rainfall and count how many times the events have happened before.

9.3.1 What is probability distribution and why use it?

If we know the likelihood (probability, chance, risk, p) that an event, E1, will
take place, then we can make some predictions for the future. For instance, if
the probability of getting a warm spring in western Norway is p = 0.64 after
having observed warm sea surface temperatures in the North Sea during the
preceding winter, one may use this knowledge to make seasonal predictions.
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In the long run, such predictions should give more (correct) hits than a pure
guess (p=50%).

Probability distributions and density functions describe the observed or
expected frequency that a value has taken/will occur.

Conditional probability: Pr(E2|E1) = Pr(E1 and E2)/Pr(E1), the prob-
ability that E2 will happen given that E1 has occurred (here ’Pr’ represents
the probability function and ’p’ a given probability). This is equivalent to
Bayes’ theorem (Leroy, 1998), more commonly expressed as Pr(X|Y ) =
Pr(Y |X)Pr(X)

Pr(Y )
.

Whereas time series of a variable shows the chronological evolution, a
distribution plot does not provide any information about the chronology
but shows how often a particular value has been observed and is called a
histogram. A normalised theoretical probability distribution is also known
as a probability density function (“PDF”). A distribution curve is useful for
estimating the probabilities associated with certain events. For instance, to
estimate the probability that a temperature is lower than Tlow, then p(T <
Tlow) = area of the part of the curve that corresponds to temperatures lower
than Tlow divided by the total area of the curve. To estimate the probability
of seeing warmer months than Thot: p(T > Thot) = 1 − p(T <= Thot).

There are two types of distributions: (i) continuous distribution such as
Gaussian, exponential, Gamma, Weibull, etc; and (b) discrete distributions
(Poisson, Binomial). The latter can only describe integer values.

9.3.2 Normal/Gaussian distribution

f(x) =
1

σ
√

2π
exp

[

−(x − µ)2

2σ2

]

. (9.1)

There are a number of commonly used theoretical distribution functions,
which have been derived for ideal conditions. One such case is where the
process (yi, i = [1...N ]) is random (stochastic), and whose distribution follows
a Gaussian shape described by f(x) in equation 9.1.

This distribution function is widely used in statistical sciences, where σ
is in this case estimated by taking the standard deviation: σ = std(~x), and
µ is taken as the mean value of ~x.

Fig. 9.2 shows a typical example of a Gaussian distribution. The values
for σ and µ have been taken from the Bergen September 2-m temperature
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Figure 9.2: An example of a Gaussian distribution curve. The vertical line
marks the mean value and the horizontal line shows the ±σ range. The
empirical probability distribution for the Bergen September temperature is
also shown as black dots.

1861-1997 record, and the empirical histogram for the temperature record is
also shown as black dots.

The Gaussian distribution function in Fig 9.2 gives a concise and approx-
imate description of the Bergen September temperature range and likelihood
of occurrence. The mean and standard deviation, the two parameters used
for fitting the Gaussian function to the observations, give a good description
of the Bergen temperature statistics.

Gaussian distribution is also commonly referred to as ’normal distribu-
tion’.

One important property of the Gaussian distribution is the fact that the
central limit theorem applies: as the sample size of a set of independent
observations becomes large, the sum will have a Gaussian distribution.

It is possible to use ESD to predict both σ and µ independently over
predefined time intervals, and then use these to reconstruct variations in the
PDF.

Sometimes, the Gaussian distribution curve is not a good description of
the data because these are not symmetrically distributed with respect to their
values. In such cases, non-symmetric distribution functions may be used to
describe the data, such as the exponential or Gamma distributions:
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9.3.3 The exponential distribution

The PDF for the exponential distribution can be written as f(Pw) = −memPw

if m < 0 because the area under the PDF curve must equal unity. It is also
possible to derive an analytical solution for the mean of the PDF (often the
’rainfall intensity - the mean of the rainy days):

Pw =

∫ ∞

x=0

−mxemxdx = −m

(

[ x

m
emx

]∞

0
−

∫ ∞

x=0

1

m
emxdx

)

= −m

[

emx

m2

]∞

0

(9.2)

∴ Pw = − 1

m
m < 0

The term
[

x
m

emx
]∞

0
is zero and cancels and e0 → 1. The expression for the

percentiles can be found analytically by solving the integral over the PDF:

p =

∫ qp

x=0

−memxdx = [−emx]
qp

0 = −emqp + 1 m < 0 → qp = ln(1−p)
m

(9.3)

Hence, the mean and and percentile can be estimated by:

µ+ = −1/m (9.4)

q+
p = ln(1 − p)/m.

Here, µ+ and q+
p represent the analytical solutions for equation 9.4, and p is

the probability level, not to be confused with P which is the precipitation
amount.

9.3.4 Gamma distribution

f(x) =
(x/β)α−1exp [−x/β]

βΓ(α)
. (9.5)

x, α, β > 0.
There are different ways of estimating the two paramterers, of which the

moment estimator (Wilks, 1995, p. 89) is the simplest:
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α̂ =
(xR)2

s2
, (9.6)

β̂ =
s2

xR

, (9.7)

where xR is the mean value for the rainy days (here, day with rainfall greater
than 1mm) only and s corresponding standard deviation. These should not
be confused with the more traditional ’seasonal means’ (x) which are esti-
mated for the entire season (both dry and rainy days).

The estimated “shape parameter” α̂ = xR
2

s2 (Note: α 6= x2

R

s2 ; (Wilks, 1995,
p. 85) may give the impression that the estimator uses the mean of the
square) and the “scale parameter” β̂ = s2

xR
, so that α̂β̂ = xR. Another

method to estimate the gamma-parameters is the maximum-likelihood fitting
described by Wilks (1995) Wilks (1995) on p. 89, but this method doesn’t
allow negative and zero values (can be avoided by using only non-zero values).

Γ(α) denotes the gamma-function defined as:

Γ(α) =

∫ ∞

0

tα−1e−tdt

The gamma function has a useful property which is that:

Γ(α + 1) = αΓ(α) (9.8)

If the Γ(α) is known for any value α < 1, then it is easy to calculate the
corresponding value for and number with similar decimal points.

Fig. 9.3 shows the distribution function for daily precipitation in Oslo
between 1883 and 1964.

Wilks (1995) states that the moment estimators are “inefficient” and lead
to erratic estimates, and recommends using the so-called maximum likelihood
estimators:

α̂ =
1 +

√

1 + 4D/3

4D
, (9.9)

β̂ = xR/α̂, (9.10)

D = ln(xR) − 1/n
n

∑

i=1

ln(xi). (9.11)
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Figure 9.3: An example of a non-symmetric distribution and the best-fit
Gamma distribution. The plot is based on the daily precipitation measure-
ments made in Oslo (St. Hanshaugen), 01-Jan-1883 to 31-Jul-1964, after
which the measurements were made at Blindern.
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The central question here is whether the Gamma parameters for a given
location are systematically influenced by either the large-scale conditions or
the local geography in such a way that they can be predicted given this
information. Such predictions are in essence the same as ’downscaling’.

An alternative to the Gamma distribution is the Weibull function.

9.4 Extreme values

Extremes can have many shapes and forms. Figure 9.4 shows two examples of
different ways to present extreme values. A ’cumugram’ (top panel) conveys
the extreme long-term character very clearly. The lower panel in figure 9.4
shows a more conventional way of presenting the extremes.

An extreme value is the largest or smallest observed value of a variable.
There are some general parametric models for extreme value distributions:
Gumbel (Pearsons type I, or EV-1), Pearsons type II (EV-II), or Pearson type
III (EV-III). Both normal and exponential distribution lie in the domain of
the attraction of the Gumbel function (the latter lies closest).

Other extreme value distributions may include the Generalised Extreme
Value (GEV), Weibull, Pareto, and Wakeby distributions.
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Figure 9.4: Upper: A ’cumugram’ showing the cumulative temperature for Sval-
bard over the course of the seasons. The lines show actual measurements, whereas
the grey and pink hatched areas show ESD results based on Benestad (2005). Year
2006 is marked by the red curve, and was an extreme year. Lower: Time series
plot of the monthly precipitation measured at Bjørnholt, near Oslo, Norway. The
rainfall in November 2000 was extreme.
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Assumption of stationarity and ergodicitya. The GEV CDF is given by:

F (x) = exp

{

−
[

1 + ξ

(−(x− ξ)

β

)]

−1/ξ
}

. (9.12)

f(x) =
1

β
exp

{

− exp

[−(x− ξ)

β

]

− (x− ξ)

β

}

, (9.13)

ξ=location parameter, β=scale parameter (NB, there is a typo in (Wilks, 1995, p. 98,

eq. 4.42): a “minus” is missing). The distribution is skewed towards higher values,

and has a peak at x = ξ. Equation 9.13 is integrateable, and the cumulative Gumbel

distribution function is

F (x) = exp

{

− exp

[

−−(x− ξ)

β

]}

. (9.14)

Return values: thresholds that on average are exceeded once per return period. Upper

quantiles of the fitted extreme value distribution. For a X-year return value, rr(X),

P (rr > rr(X)) =

∫

∞

rr(X)

f(rr)dr = 1/X. (9.15)

The X-interval-length (eg 10-year) return value is the point on the abscissa where the

CDF equals (1 - 1/X). For example, the 10-year return value for the maximum daily

precipitation in Oslo is 46 mm (shown as dash-dot line), whereas the 100-year return

value is 63mm (dashed).

The estimators for the GEVs are:

β̂ =
s
√

6

π
,

and

ξ̂ = x− γβ̂.

γ = 0.57721... (Euler’s constant).

aevery trajectory will eventually visit all parts of phase space and that sampling
in time is equivalent to sampling different paths through phase space von Storch and
Zwiers (1999), p.29
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9.4.1 iid-test

For many types of extreme value analyses, it is assumed that the PDF is con-
stant and doesn’t change over time. A simple test for whether the upper tail
of the distribution changes can be implemented with an iid-test (Benestad,
2003d, 2004d) (the R-package idd.test).

The iid-test is very simple and yet a powerful means to test whether
the upper tail of the PDF if being shifted in time. Too many or too few
record-events are indicators of a non-stationary PDF, as a H0 corresponding
to a constant distribution (that is, the data being ’identically distributed’)
implies a simple rule for how often we can expect to see new records due to
sampling fluctuations.

The iid-test is based on the assumption that the probability that the nth
element contains the greatest value is p = 1/n, and can indicate whether the
series fails to either contain independent data or that they are not identically
distributed. The test also fails if there are ties (Benestad, 2004d).

An iid-test will indicate whether an extreme value analysis, for instance
based on GEV modelling, is appropriate. The test was originally designed
to test the assumptions for using analog models, and it useful for judging
the likelihood that the upper tail derived through analog models will be
convoluted. Thus, the null-hypothesis of the iid-test is the basis for the
statement that the analog models are flawed when it comes to modelling the
upper tails during an ongoing climate change.

If nr is low for both ’forward’ and ’backward’ tests, then this may be a
sign of ties or that the instrument ’clips’ the data (there is an artificial upper
limit to the readings imposed by the instrument).

9.5 Downscaling extreme indices

It is possible to define a number of climate extreme indices (Alexander et al.,
2005; Frich et al., 2002), and then apply empirical-statistical downscaling
(ESD) directly to those. Such work has been carried out within the European
Union STARDEX-project1.

Frich et al. (2002) used an index (’R95T’) that described the fraction of
the total precipitation associated with events exceeding the 95%-percentile.

1http://www.cru.uea.ac.uk/projects/stardex/
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Figure 9.5: Demonstration of the iid-test. Left panel shows how many record-
breaking events nr have been recorded from time zero as more and more observa-
tions are collected. Linear line is the expected number of nr and the grey envelope
marks the CI. Filled symbols show nr for the chronological ordered data (’forward
test’) whereas open symbols represent the analysis applied to a reversed time series
(’backward test’). Right panel shows the timing of new record breaking events for
parallel measurements made at a number of locations, both for the chronological
ordered data and the reverse chronological order.
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On a similar vein, Ferro et al. (2005) presented simple non-parametric meth-
ods for exploring and comparing differences in pairs of PDFs and histograms.

Extreme heat waves can be linked with the atmospheric circulation regime
(Kyselý, 2002), and a catalogue of weather type or some classification may
be used to study their occurrence.

Often extreme indices may not follow a Gaussian distribution, and there-
fore an ordinary linear model, such as ordinary least squares, may not be the
most appropriate means for downscaling. Methods such as CCA also assume
a normal distribution. However, generalised linear models can be employed
for data with PDFs other than Gaussian.

9.5.1 Generalised Linear Models (GLM)

General linear models (GLMs) have not yet been widely used in the climate
community (Yan et al., 2006), however there are references to work based on
GLM in climatology journals, albeit mainly authored by people with strong
statistics background (Yang et al., 2005; Yan et al., 2006, an references
therein).

Yang et al. (2005) used GLMs2 to simulate sequences of daily rainfall at
a network of sites in southern England. Abaurrea and Aśın (2005) applied
GLMs to predict daily rainfall in Spain, and Yan et al. (2006) use GLM to
simulate sequences of daily maximum wind speeds over the North Sea region.

One obstacle for the GLM gaining impasse to the wider research com-
munity may have been the differences between the disciplines and that the
papers on GLM have been written by statisticians with a rigorous formal
statistical treatment that is often difficult to digest for climatologists with a
physics, meteorology, or geography background.

For GLM-based analysis, a common view is that each data value is one
realisation of a stochastic process, in contrast to a classical Newtonian physics
view where the variable is regarded more as a deterministic response to a set
of forcing conditions. We will refer to the former mind set as ’Bayesian
frame’. Moreover, a GLM approach often assumes that the PDF is varying
from time to time, as opposed to the PDF being constant over time but where
each realisation are predicted deterministically, given a set of predictors.

Although the differences between the statistician’s frame of mind and that

2http://www.statsoft.com/textbook/stglm.html
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of a ’typical physicist’ may seem subtle, the implications are more profound
since the PDF changes from one observation to the next in the former, and
it is the PDF that is systematically affected by the forcing (Yan et al.,
2006). From a Newtonian view point, on the other hand, systems are often
regarded as well-defined for which energy, momentum and mass are conserved
quantities. Ideally, any state can be determined accurately in this frame work
if all the forcings are known, given these constraints.

Unknown factors produce behaviour that is unaccounted for, commonly
referred to as ’noise’. If the noise is weak (high signal-to-noise ratio), then
the system is practically deterministic, but if the noise if overwhelming, then
the system behaves in a stochastic manner.

Thus from a Newtonian view point, the noise is not affected by the known
forcing conditions and the PDF for the response is taken to be independent
of that of the noise, whereas in the Bayesian frame, the PDF describing
some stochastic behaviour is assumed to be systematically influenced by the
external conditions.

The implications of stochastic systems is that the principal conditions of
causation are not accounted for because different realisations can be drawn
from the same PDF, but there is no way to predict the exact value even if
the PDF is well described.

In practical terms, however, the two approaches are two sides of the same
problem, but involve completely different interpretations.

Maximum Likelihood Estimation

A maximum likelihood estimation (MLE) is used to derive a model for the
expectation value E(·) for a variable Yt at any given time t: E(Yt) = µt =
g−1(Xβ). Here µt is the mean for the PDF (µt =

∫ ∞

−∞
xft(x)dx) at time t,

rather than the empirical average for the entire sequence (Y ), and g(·) is a
link function that determines the scale on which the predictors are additive.

Note that in a Bayesian framework, the GLM predicts the mean µ of the
distribution rather than the realisation itself. One example, where the mean
daily precipitation is modelled using a GLM taking ~x1 and ~x2 as predictors,
looks like:

ln(~µ) = β0 + β1~x1 + β2~x2 (9.16)

This exercise can also be repeated with µ replaced by qp for the prediction
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of percentiles (q̂p). The regression analysis just by itself, however, does not
provide a description of the PDF, but if the estimates of µ are used in con-
nection with and equation describing the relationship between the parameter
and µ (such as for an exponential distribution) then it is possible to use GLM
to estimate PDFs too.

This approach is similar to that of Yan et al. (2006), who assumed either
Gamma or Weibull distributions and constant shape parameters, and then
used µ to infer the PDF for given time.

It is possible to combine direct methods (e.g. linear or analog) with the
downscaling of PDFs to get time series with more realistic characteristics
(variance and time structure). The downscaled PDFs can then be used in
conjunction with local quantile transformation to ensure that the projected
results follow a prescribed distribution (see example below).

9.6 Downscaling PDFs

When downscaling the PDF for a variable X, given external conditions Y ,
one implicitly employs Bayes’ theorem (Leroy, 1998):

Pr(X|Y ) =
Pr(Y |X)Pr(X)

Pr(Y )
. (9.17)

Downscaling of PDFs is thought to provide a more realistic representation
of the upper tails of the distribution than a direct downscaling of the daily
values from the climate models (Hayhoe et al., 2004; Pryor et al., 2005,
2006).

Yan et al. (2006), assumed either Gamma or Weibull distributions and
constant shape parameters, and then used µ to infer the PDF for given time.
However, their work did not really concern ESD as such.

There are two ways to downscale PDFs, either to model the PDF parame-
ters directly from the large-scale predictors, or to relate the PDF parameters
to the local climatic conditions, and then downscale the latter before em-
ploying a statistical model to derive the parameters from the local climate
information.
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Figure 9.6: Downscaled distribution for daily January temperature in Oslo.

9.6.1 Downscaling PDF for temperature

The simplest way of downscaling PDFs can be demonstrated for the tem-
perature which is close to Gaussian. Figure 9.6 shows the results where the
mean (estimator for µ) and standard deviation (estimator for σ) for each Jan-
uary months have been used as predictand in a two-tiered approach, where
monthly mean temperature has been used as predictor for each.

Knowing the relationship between µ and σ on the one hand and the trends
described by the large-scale predictor on the other hand, enables us to infer
projections for the tow PDF parameters.

The example given in Figure 9.6 suggests that there is no trend in σ, but
a substantial systematic increase in µ.

9.6.2 Downscaling PDFs for daily precipitation

The gamma parameters shape and scale also show a relationship with local
climatic conditions (Benestad et al., 2005), even though the relationship
may be weak.

Exponential distribution furthermore provides simple analytical solutions,
and reduce the number of unknown parameters to fit. Furthermore, the upper
tails involve a smaller number of events and are thus affected by uncertainty
associated with statistical fluctuations to a higher degree than less extreme
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Figure 9.7: The daily rainfall amount at Ferder and fitted exponential distribu-
tions.

values.
Figure 9.8 is taken from Benestad et al. (2005) and shows a number of

linear-log plots for the distribution of 24-hour precipitation amounts for 49
different European locations. The grey dots represent the empirical results
(histogram with log y-axis) and the dashed black lines show the distribution
model fit. The different distribution models include 3 exponential models as
well as the Gamma model (using moments estimators).

When downscaling precipitation, it is common to split the data between
rainy days and dry days. Here, P will denote precipitation in general terms,
Pw will denote precipitation for wet days, and Pa represents precipitation for
all days, and the mean value of P is written as P . Thus Pw > P a since Pa

includes a number of data points with zero value and P ≥ 0 mm/day.
All seasons may be included in the estimations of the PDFs and the mean

climatic conditions (T and P a), and the PDFs represent the local (single
station) precipitation rather than areal means, and all seasons rather than a
particular time of year.

When histograms for daily precipitation are plotted with a log-scale along
the vertical axis, a close to linear dependency to magnitude is evident (Figure
9.7).

If we let y(Pw) = ln |n̂(Pw)|, and n̂(Pw) be the number of Pw events with
values falling within the interval Pw and Pw + δPw (δPw was taken to be 2
mm), then a linear model ŷ = m′Pw + c′ can be used to represent the linear
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dependency between counts and magnitude.
A (weighted) least-squares regression can be used to solve for m′ and c′,

taking Pw as the predictor and the log of the counts as the predictand (the
weights can be taken as

√
n in order to emphasis the cases with a greater

statistical sample).
A linear dependency ln |nP | ∝ Pw implies a simple exponential distribu-

tion, nP ∝ emPw with m < 0, and has one advantage that the PDF can be
written as f(Pw) = −memPw because the area under the PDF curve must
equal unity. Another useful property is that the mean µ and any percentile
qp for the wet-day distribution can easily be derived analytically.

It is evident from Figure 9.7 that the character of the distribution (e.g. the
slope m) varies from place to place. The interesting question here is whether
there is a systematic dependency between the slope m and the large-scale
flow regime or dominant characteristics of the local climate.

Similar near-linear behaviour can be seen in similar log-linear distribu-
tion of tornadoes of category F1 and greater (Feuerstein et al., 2005, Fig.
2a). Feddersen and Andersen (2005) have used exponential distribution to
approximate the PDF for 24-hour precipitation in Denmark.

It is also possible to apply the regression results to prediction of temporal
changes. Figure 9.9 shows the prediction (extrapolation) of variation of the
seasonal 24-hour precipitation distribution in Oslo and Bergen with a 2nd
order polynomial and linear exponential models respectively.

The model underestimates the frequency of days with low precipitation in
Bergen during winter and autumn in this example, but yields an approximate
representation of the distribution functions for Oslo.

Part of the discrepancy between empirical and extrapolated representa-
tion is associated with the constant value not used in the estimation of the
PDF. Here, the probability densities are used along the y-axis, and since
these are significantly less than unity small errors tend to appear more seri-
ous than a linear plot would indicate. The extrapolated PDFs in the main
frame show a better correspondence with the empirical data. Especially the
curve for the autumn in Bergen (grey) indicates too low occurrence of drizzle
and too many cases with heavy precipitation.

An extrapolation of the exponential law was used by Benestad et al.
(2005) and Benestad (accepted 2007) to make projections for the future.
The linear rate of change (◦C per decade and mm/month per decade) in the
local mean temperature and precipitation was taken from the downscaling
analysis of Benestad (2005).
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It is possible to extend the model by using a polynomial rather than a
linear fit to describe the data points in the log-histogram. In some locations
such as Oslo and Tromsø the results indicate little changes, whereas in places
like Bergen and Glomfjord, the extrapolation indicates a substantial increase
the frequency of heavy 24hr-precipitation.

However, it is important to keep in mind the facts that these results may
be subject to biases and that the validations using independent data suggest
that these extrapolations are not always accurate for all locations.

The projections for Bergen and Glomfjord with a decrease in the days
with drizzle and more dry days are considered not reliable since the physical
situation for Bergen and Glomfjord with a dominance of orographically forced
rainfall differs much from most other places, and hence an extrapolation
based on other types of conditions (with a warmer climate but where the
orographic effect on rainfall is absent) can produce misleading results. This
interpretations is supported by failure of predicting the seasonal distributions
for Bergen (Figure 9.9b).

These results may nevertheless give an indication of changes that can be
expected in the distribution functions for a number of locations for which the
local orography does not play a special role. A future warming and a trend
towards a wetter climate can also lead to more heavy precipitation events.

9.7 Further reading

Stephenson et al. (1998) gives a discussion on the distribution of the Indian
rainfall data. Pryor et al. (submitted, 2006) discusses ESD for wind speed
distributions and Hayhoe et al. (2004) downscaled PDFs for the temperature
in California.

Benestad et al. (2005) attempted to downscale the scale and shape pa-
rameters for the gamma distribution describing the daily rainfall amount
in Norway, but the relationship between the large-scale SLP and these pa-
rameters was weak. They also looked at the latter type, but assumed an
exponential distribution rather than gamma.

Benestad (accepted 2007) argued that a linear fit can with success be
used as an approximate description here, although a gamma fit may often
yield a more accurate representation of the upper tails of the precipitation
distribution. Nevertheless, the exponential law is not very different to the
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more commonly used gamma distribution when its parameters are fitted to
provide a best-fit to the daily precipitation amounts (Figure 9.7).

A readable introduction to probability is given by chapters 1 and 2 in
Wilks (1992)Wilks (1995), and in chapter 4 various commonly used theo-
retical distribution functions are discussed. The topics on probability and
distributions are also covered in Von Storch and Zwiers (1999) von Storch
and Zwiers (1999), sections I.2 and I.3. A useful reference is also the Nu-
merical Recipes Press et al. (1989), Chapter 13, and Press et al. (1989),
p.548-553. The Gumbel distribution is also discussed on pp. 45–50 in
Von Storch and Zwiers (1999) von Storch and Zwiers (1999). A good ref-
erence on extreme value theory by Stuart Coles can be found on URL:
http://www.maths.lancs.ac.uk/c̃oless/.

(von Storch and Zwiers, 1999, pp45-50), (Wilks, 1995, pp 93-98), and
(Press et al., 1989, p.548-553, 590-598).
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a b

c d

Figure 9.8: Fits of (a) the Gamma distribution, (b) ea+bx, (c) ea+bx+cx2

, and
(d) ea+bx+cx2+dx3

to the log-linear distribution of 24-hour precipitation. The y-
axis shows the log of the frequency and the x-axis the linear scale of precipitation
amounts.
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Figure 9.9: Seasonal dependency: lines represent estimates for f(x) and symbols
represent the empirical values. The different seasons are shown in different colours.
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a b

c d

Figure 9.10: Inter-comparison of results derived for Oslo through various strategies
for September–November 2000. Panels a–c show downscaled Gamma parameters
based on SLP, temperature and precipitation respectively.
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9.8 Examples

9.8.1 iid-test

> library(iid.test)

> library(clim.pact)

> data(oslo.dm)

> i1 <- is.element(oslo.dm$dd,1) & is.element(oslo.dm$mm,7)

> i2 <- is.element(oslo.dm$dd,6) & is.element(oslo.dm$mm,7)

> i3 <- is.element(oslo.dm$dd,11) & is.element(oslo.dm$mm,7)

> i4 <- is.element(oslo.dm$dd,16) & is.element(oslo.dm$mm,7)

> i5 <- is.element(oslo.dm$dd,21) & is.element(oslo.dm$mm,7)

> i6 <- is.element(oslo.dm$dd,26) & is.element(oslo.dm$mm,7)

> i7 <- is.element(oslo.dm$dd,31) & is.element(oslo.dm$mm,7)

> Y <-cbind(oslo.dm$precip[i1],oslo.dm$precip[i2],

oslo.dm$precip[i3],oslo.dm$precip[i4],

oslo.dm$precip[i5],oslo.dm$precip[i6],oslo.dm$precip[i7])

> iid.test(Y)

9.8.2 Downscaling PDFs for normal distribution

> library(clim.pact)

> x.rng <- c(-50,40)

> y.rng <- c(45,70)

> load("ERA40_t2m_mon.Rdata")

> GCM <- retrieve.nc("pcmdi.ipcc4.mpi_echam5.sresa1b.run1.monthly.tas_A1.nc",

v.nam="tas",x.rng=x.rng,y.rng=y.rng)

> attr(GCM$tim,"unit") <- "month"

> T2m <- catFields(t2m,GCM,mon=1)

> eof <- EOF(T2m,lon=x.rng,lat=y.rng)

> m <- KDVH4DS()

> s <- KDVH4DS(method="sd")

> ds.m <- DS(m,eof)

> ds.s <- DS(s,eof)

> M <- mean(m$val,na.rm=TRUE) + seq(0,10,length=100)* ds.m$rate.ds

> S <- mean(s$val,na.rm=TRUE) + seq(0,10,length=100)* ds.s$rate.ds

> plot(c(2000,2100),range(c(M-2*S,M+2*S)),type="n",

xlab="Year",ylab="PDF")
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> grid()

> for (i in 1:length(M)) {

> lines(rep(2000+i,2),M[i]+2.0*c(-S[i],S[i]),lwd=7,col="grey90")

> lines(rep(2000+i,2),M[i]+1.5*c(-S[i],S[i]),lwd=7,col="grey70")

> lines(rep(2000+i,2),M[i]+1.0*c(-S[i],S[i]),lwd=7,col="grey50")

> lines(rep(2000+i,2),M[i]+0.6*c(-S[i],S[i]),lwd=7,col="grey30")

> lines(rep(2000+i,2),M[i]+0.3*c(-S[i],S[i]),lwd=7,col="grey10")

> }

>dev.copy2eps(file="esd_ds-gaus.eps")

The example above shows a simple downscaling exercise for the mean and
standard deviations of daily January temperature (Figure 9.6).

9.8.3 Downscaling PDFs exponential distribution

The example below and Figure 9.11 show how a downscaling of PDFs may be
used together with a time series to scale the values according to a predicted
distribution. Here the historical observations have been scaled for simplicity,
but the idea is to first apply e.g. an analog model, then downscale the PDF,
and finally use a local quantile transformation to scale the values according
to the predicted distribution.

> # Example showing a simple exercise where historic precip is

> # rescaled to have a new pdf

> data(exp.law1)

> data(oslo.dm)

> a<-DSpdf.exp(oslo.dm,dT=3,dP=1)

> F1<- list(x=a$x,P=a$Fx.obs)

> F2<- list(x=a$x,P=a$Fx.chg)

> y<-CDFtransfer(Y=oslo.dm$precip,CDF.2=F2,CDF.1=F1,plot=TRUE)

> plot(oslo.dm$precip,main=oslo.dm$location,

y,xlab="Present 24-hr precip",ylab="future 24-hr precip")

> lines(c(0,100),c(0,100),col="grey",lty=2)

> grid()

> oslo.x <- oslo.dm

> oslo.x$precip <- y

> oslo.x$yy <- oslo.x$yy - min(oslo.x$yy) + 2030

>

> x11()
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> breaks <- seq(0,70,by=2.5)

> h1 <- hist(oslo.dm$precip,breaks=breaks)

> h2 <- hist(oslo.x$precip,breaks=breaks)

> plot(h1$mids,h1$density,type="l",lwd=3,log="y")

> grid()

> lines(h2$mids,h2$density,col="red",lwd=3)

>

> x11()

> plot(range(c(oslo.dm$yy,oslo.x$yy+1),na.rm=TRUE),

> range(c(oslo.dm$precip,oslo.x$precip),na.rm=TRUE),type="n",

> main=oslo.dm$location,xlab="Years",ylab="24-hr precip (mm)",ylim=c(0,70))

> grid()

> lines(oslo.dm$yy+(oslo.dm$mm-1)/12+(oslo.dm$dd-1)/365.25,oslo.dm$precip,

> col="grey")

> points(oslo.dm$yy+(oslo.dm$mm-1)/12+(oslo.dm$dd-1)/365.25,oslo.dm$precip,

> pch=19,cex=0.6)

> lines(oslo.x$yy+(oslo.x$mm-1)/12+(oslo.x$dd-1)/365.25,oslo.x$precip,

> col="pink")

> points(oslo.x$yy+(oslo.x$mm-1)/12+(oslo.x$dd-1)/365.25,oslo.x$precip,

> pch=19,col="red",cex=0.6)
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Figure 9.11: Results from the example below demonstrating a simple exercise
where historic precip is rescaled to have a new PDF.
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9.9 Exercises

1. What is meant by quantiles/percentiles? Why are these useful for
studying extremes? Use R to compute the 95% quantile for a number
of distributions generated with a random number generator (rnorm,
rgamma).

2. Describe PDFs. Can you mentions some important families/types of
PDFs? Use the R functions rnorm and rgamma to plot a number of
PDFs with arbitrary parameters.

3. Try to fit a gamma distribution to oslo.dm$precip. Use only the rainy
days.

4. Why may ordinary least-squares methods be unsuitable for modelling
upper quantiles?

5. Write a code that computes the 90% quantile for each month. Use
these values instead of monthly mean, and apply an ESD using DS and
DNMI.slp (tips: make the station series look like a ’monthly station’
object by taking oslo.t2m and replacing the values with the quantiles
and changing the element type).

6. Use an analog model to make local scenarios for daily rainfall for the
future, and linear models with monthly temperature and precipitation
data to estimate the change in the annual mean temperature and pre-
cipitation.
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Chapter 10

Weather generator

Figure 10.1: Weather generators use random numbers in a similar fashion to
throwing dice.

The previous chapters mainly dealt with EDS techniques for monthly cli-
matic variables. For many impact applications and decision support systems
daily weather data are required. In particular, extreme events are much more
important than the mean climate in the context of climate change and its
impact. Daily climatic variables are often required to define extreme climate
events (e.g. Moberg et al. (2006)).

215



V
er
si
o
n
0
-9

216 CHAPTER 10. WEATHER GENERATOR

One of the problems in downscaling daily variables including extremes
is due to the fact that daily scale variations are usually too fine scale to be
treated by existing GCM and even regional climate model (RCM), which
makes statistical downscaling an attractive and interesting alternative. This
was clearly demonstrated by Kyselý (2002) who compared the skills of two
GCMs in reproducing extreme high and low temperatures that from statis-
tical downscaling.

One way to downscale daily meteorological variables is to use a weather
generator (e.g. Wilks and Wilby (1999); Wetterhall et al. (2006)). This
chapter focuses on modeling and downscaling of daily climatic variables with
help of a stochastic model, which will for form the basis for the downscaling
of extreme covered by next chapter.

Development of weather generator was started in the early 1960s (e.g.
Bai (1964)). At that time, the researchers were limited to precipitation
simulation and the application was mainly found in hydrology (e.g. Gabriel
and Neumann (1962)). Today, its application reaches to almost every field
in assessment of climate impact in conjunction with other models such as
agriculture, soil erosion, land use, and ecological systems.

Current models allow simulation of several variables, including precipi-
tation (occurrence and intensity), temperature (maximum, minimum, dew
point, and average), radiation, relative humidity, and wind (speed and direc-
tion). Because the other weather variables such as temperature, radiation
and etc are dependent on precipitation occurrence, the stochastic model for
precipitation needs to be specified first.

In this chapter, simulation of precipitation using the Richardson type
weather generator is described to illustrate the principles of weather gener-
ator. How weather generator is used for spatial and temporal downscaling
will then be introduced.

10.1 Weather generator

A Weather Generator (WG) is a stochastic model that can be used to simu-
late daily weather based on parameters determined by history records (Wilks
and Wilby, 1999). Precipitation, maximum temperature, minimum temper-
ature, radiation and more can all be simulated by weather generator.

Hydrology has a long tradition in using weather generator to generate nec-
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essary meteorological inputs to hydrological models (e.g. Wight and Hanson
(1991); Clark et al. (2004)). Agricultural models (e.g. Wallis and Griffiths
(1997)) and ecological models (e.g. Racsko et al. (1991)) all make extensive
use of weather generators.

Recently, weather generator has gained renewed attention and has been
extensively applied to downscale local climate change scenarios (e.g. Semenov
(2007)). Such a scenario is useful in studying impacts of climate change on
a variety of systems including ecosystem and risk assessment, since it can
generate local daily records in the future based on a GCM climate change
scenario.

As will be described in next Chapter, weather generator is an important
tool to study extreme climate event and risk analysis. Long time series are
required to study extreme climate events that are rare. However, the length
of observed time series is often insufficient to allow reliable estimate of the
probability of extreme events.

A weather generator has the advantage to be able to statistically simulate
weather over an extensive period based on using parameters determined from
the relatively short history records.

Another application of weather generator is to simulate meteorological
conditions for unobserved locations, which is useful for simulating historical
and future climates. This is due to the fact that parameters of a weather gen-
erator are much more stable than the weather itself with regard to locations
(Semenov and R.J., 1999). Thus, the parameters for an unsampled location
may be readily interpolated from the surrounding sampled sites. This way a
quantitative assessment of impact of climate condition at unsampled location
can be realized.

In addition, weather generator can also be used to do timely assessment of
climate variation in terms of a series of daily meteorological variables based
on seasonal forecasting of climate.

10.2 Richardson type WG for precipitation

Precipitation occurrence and intensity are two processes of a precipitation
event (Richardson, 1981). At first, the simulated day is either a wet day
or a dry day must be determined. There are three methods to simulate it.
Which include two-state (precipitation either occurs or it does not) first order
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Markov Chain, multi-order Markov Chain and Spell length (Srikanthan and
McMahon, 2001). Because the first order Markov Chain is relatively simple
and widely applicable, it was used in most of weather generator including
the Richardson type weather generator.

After the occurrence of precipitation is determined based on transition
probabilities, precipitation intensity is simulated. If it is a dry day, precip-
itation intensity is zero; else precipitation intensity will be simulated based
on a stochastic model based on empirical distribution precipitation intensity.

Two-parameter Gamma distribution is usually used for simulation of daily
precipitation intensity in the Richardson type weather generator (e.g. Liao
et al. (2004)).

10.3 Downscaling based on WG

Several approaches have been described to use a weather generator to con-
struct local climate change scenarios (e.g. Wilks (1992); Semenov and Barrow
(1997)). In principle, parameters of the generator need to be modified ac-
cording to the climate change scenario from a global climate model (GCM)
to generate local climate under changed climate conditions.

As an example, the weather generator used is firstly calibrated using ’av-
erage’ weather data for a particular region, roughly corresponding to the size
of an appropriate GCM grid box, with the resulting parameters describing
the statistical characteristics of that region’s weather. This ’average’ weather
is calculated using a number of stations from within the relevant region. The
weather generator is also calibrated at each of these individual stations.

Then relationship between the parameters of the region and individual
stations are established. Secondly, daily GCM data for the grid box corre-
sponding to the area-average weather data are used to obtain correspond-
ing parameters. The relationship established using observations is used to
estimate parameters at individual stations, which allows the generation of
scenarios for each station within the area (e.g. Wilks and Wilby (1999)).

Another way to downscale local scenarios is based on a combination of
spatial regression downscaling with the use of a local weather generator (Se-
menov and Barrow, 1997). Regression downscaling can translate the coarse
resolution GCM grid-box predictions of climate change to site-specific val-
ues. These values were then used to perturb the parameters of the stochastic
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weather generator in order to simulate site-specific daily weather data. This
approach produces changes in the mean and variability of climate in a con-
sistent way.

As an example, a weather generator called ClimGen (e.g. Tubiello et al.
(2000)) has been used, together with a global monthly temperature data
set, to generate regional (0.5*0.5 degree latitude and longitude) scale daily
climate in two steps: 1) scaling of the large scale GCM scenarios on the
monthly time scale to the regional scale by using the global monthly data set
and the simulated past climate from GCM; 2) decomposing monthly regional
climate to daily climate by using ClimGen (Arnell and Osborn, 2006).

Once the PDF is obtained for a variable that represents the future, it is
possible to use these in stochastic weather generators to produce time series.
This type of simulation is also known as ’Monte-Carlo simulations’, and use
a random number generator to random numbers conditioned by the PDF.

It is also important that the weather generators produce realistic time
structures, such as auro-correlations, as well as realistic wet-spell durations
and dry intervals. The probability of a rainy day after a dry day, and vice
versa, is important to model correctly.

Weather generators applied to single locations at the time may not ensure
spatial consistency, which can be a problem. One way to solve this may be
to apply a stochastic analog model (Zorita et al., 1995) (see chapter ), thus
prescribing simultaneous values globally.

Soltani and Hoogenboom (2003) evaluated the impact of the length of
input data on the quality of the output from the weather generators. They
found that the length was sensitive to the type of weather generator (WGEN
or SIMMETEO) and the parameter, and recommended that at least 15 years
of data is required.

10.4 Further reading
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10.5 Examples

10.5.1 Coin-flipping

heads (0) & tails (1). For 100 trials, what is the probability that there will
be less than 4 heads?

p=0.5; N=100;

[1+N+N(N−1)/2+N(N−1)(N−2)/3]0.5N = 328451×0.5100 = 2.6×10−25

The chance of getting less than 4 heads is practically zero: if the remaining
life time of our solar system is 10 billion years (t=3.15 × 1017s) and it takes
1s to sample each set of 100 throws, the chance of obtaining 4 or less heads
is Pr(X <= 4) = 8 × 10−8.
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10.6 Exercises

1. Use the rnorm and rgamma to generate series of synthetic data for tem-
perature and precipitation respectively, by taking the mean and stan-
dard deviations from an observed daily temperature series and shape
and scale for precipitation (wet days only).

2. Why are only wet days used for the precipitation fit?

3. Use the data from the exercise above and introduce non-rainy days
according to the observed frequency.

4. How do the simulated time structure compare with the observed, in
terms of length of dry spells/wet spells and transition probabilities?
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Implementing ESD
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11.1 Numerical tools

11.1.1 R

clim.pact

The tool, clim.pact1, tailored for climate data has been written in order
to facilitate more efficient, easier, and faster analysis. This tool consists
of an R-package (Ellner, 2001; Gentleman and Ihaka, 2000), and provides
additional functions in the R environment for climate analysis, visualisation,
and empirical downscaling. R is a statistical software freely available from
the Internet (http://www.R-project.org/), sometimes referred to as the
“a GNU-version of Splus”.

Documentation on R is also freely available from the Internet2, but is also
installed locally as (hyper text mark-up language) HTML pages, so that a
Web-browser can be used in an online-help facility (activated through the R

commando:”help.start()”).
The user-support in R is impressive, especially considering it being a freely

available software with no license restrictions. An advantage of R-packages is
that the R-environment combines their functionality with the large number
of functions available in the R-environment as well as from other packages.

A large number of contributed packages are available for the R environ-
ment, which are voluntary contributions from R-users world wide. These
packages are also available from the Internet (http://www.R-project.org/).

An R-package consists of the actual R-code as well as documentation
in the HTML and portable document format (PDF). One such package is
clim.pact, whose pilot version (V.0.9) has been documented in Benestad
(2004b, 2003c). The work on clim.pact has progressed, and version 2.2 is
now released. The new version has undergone dramatic changes with respect
to the user-syntax3, but are based on the same mathematical and logical

1Available from the CRAN Internet site (http://cran.r-project.org/) under the link to

’contributed packages’.
2“An Introduction to R”, “the R language definition”, “Writing R Extensions”, “R

Data Import/Export”, “R Installation and Administration”, “The R Reference Index”, in

additional to frequently asked questions (FAQs), Contributed and newsletters.
3How the functions are called.
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framework as version 0.9.
The downscaling in clim.pact can easily be set up in a way that incor-

porates common principal components (Flury, 1988; Sengupta and Boyle,
1993, 1998; Barnett, 1999) similar to the work published by Benestad et al.
(2002); Benestad (2002a,b, 2001b). The difference main difference between
method used to derive these published results and clim.pact is that the de-
fault method used by clim.pact is linear regression instead of CCA4-based
models.

Furthermore, clim.pact utilises a stepwise screening procedure that aims
to minimise the Akaike information criterion (AIC) (Wilks, 1995, 300–302),
whereas the CCA-based results carried out a stepwise screening based on
correlation coefficients in a cross-validation analysis (Wilks, 1995, p.194-198).

This packages also incorporates polynomial descriptions of climatic trends
(Benestad, 2003e) and provides an easy way to pre-process climate data
(spatial maps and station records), as well as doing the “house keeping” in
terms of matching time stamps, etc. Additional features include composites
and spatial correlation analysis.

The purpose of this report is primarily to give the readers an up-to-date
documentation on the use of clim.pact (Benestad, 2003b, 2004b)

Rclim

Another useful R-package is Rclim, available from http://www.met.reading.ac.uk/cag/rclim/.
This package is less geared towards ESD but more focused on statistical anal-
ysis.

11.1.2 SDSM

The SDSM5 ESD tool is constructed for Windows platforms by Rob Wilby
and Chris Dawson. SDSM has been used extensively for impact studies and is
’a user-friendly software package designed to implement statistical downscal-
ing methods to produce high-resolution monthly climate information from
coarse-resolution climate model (GCM) simulations. The software also uses
weather generator methods to produce multiple realizations (ensembles) of

4CCA = canonical correlation analysis.
5http://www-staff.lboro.ac.uk/∼cocwd/SDSM/ManualSDSM.pdf
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synthetic daily weather sequences’. Recent study based on SDSM include
Wilby and Harris (2006)

11.1.3 ClimateExplorer

The climateexplorer tool (http://climexp.knmi.nl/) developed by Geert Jan
van Oldenborgh at the KNMI offers a nice suite of analyses and a large data
base for statistical studies. Although this is not tailored for ESD specifically,
it can nevertheless provide useful statistics and diagnostics.

11.1.4 ENSEMBLE-S2D

The EU-project ENSEMBLES has established an Internet portal for ESD
on the URL www.meteo.unican.es/ensembles. This internet page is a facility
which allows ESD carried out on-line.

11.2 Gridding the results

11.2.1 Kriging

Benestad (2002b) used kriging analysis (Matheron, 1963) in order to con-
struct spatial maps describing how future warming (i.e. the multi-model
ensemble mean) may vary geographically. Kriging is a standard method
used for spatial interpolation in geo-sciences, and an evaluation of the krig-
ing methodology is outside the scope of this paper.

Although this kind of spatial interpolation gives an approximately realis-
tic representation, it does not take into account the fact that local warming
rates may vary with the distance from the coast, altitude, latitude and longi-
tude. In order to produce more realistic maps, this geographical information
must be included in the spatial analysis.
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Figure 11.1: Example of a kriging analysis for mapping the results (Benestad,
2002b).

11.2.2 Residual Kriging

A kriging analysis Matheron (1963) can be applied to the residuals of the
regression analysis in order to spatially interpolate the part of the trends that
could not be related to geographical parameters (using the geoR-package for
R). Hence, the maps represented more than just the geographical variance
accounted for by the multiple regressions used for geographical modelling,
since interpolated residuals are added to the prediction to recover most of
the signal.

The results presented in Benestad (2004e) involved further ’refinement’
to those of Benestad (2002b) by taking into consideration geographical infor-
mation not utilised in the earlier work, in addition to examining conditional
probability estimates instead of multi-model ensemble mean values. The
results derived for each site was used in a geographical model based on a



V
er
si
o
n
0
-9

228 CHAPTER 11. IMPLEMENTING ESD

January
Estimate Std. Error t-value Pr(> |t|)

c0 0.394001 20.805723 0.019 0.985
c1 17.358068 2.998599 5.789 6.80e-08 ***
c2 -0.005374 0.006237 -0.862 0.391
c3 0.174924 0.342191 0.511 0.610
c4 0.583544 0.126104 4.627 1.02e-05 ***

Table 11.1: The analysis of variance (ANOVA) of the geographical multiple re-
gression model, y=c0 + c1 dist + c2 alt + c3 lat + c4 lon, for January. R2 = 0.4239;
F-stat= 20.23; on 4 and 110 DF; p-value= 1.635e-12. The independent variable
“dist” is the distance from the coast, “alt” is the altitude, “lat” is the latitude,
and “lon” is the longitude of the location of the downscaled scenarios. Significance
codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

multiple regression analysis against distance from the coast, altitude, lati-
tude and longitude. The geographical regression models will henceforth be
referred to as ’GRMs’. The details of the model calibration performed by
Benestad (2004e) is reproduced in Table 11.1 are listed in the form of coeffi-
cient estimates, standard error estimates, t-values and probabilities (p-value)
of null-hypothesis (zero coefficient) being true.

Also shown are the estimates for the R2 (variance explained), the F-
statistic (“strength” of the regression), the degrees of freedom, and the p-
value for the entire regression. It is important to keep in mind that the
geographical models derived here may not be valid for other parts of the
world. A kriging analysis similar to Benestad (2002b) was used for the spatial
interpolation of the residuals from the regression analysis.

The mapping of the results in Benestad (2005) (Figure 11.2) were based on
similar analysis as in Benestad (2004e), but multi-model ensemble wi quality-
weighted mean linear trends for annual mean values over the period 2000–
2099 were estimated for each station location, thus providing a Bayesian-type
quality-weighted trend estimate.

The technique used in Benestad (2005) differed further from that of Ben-
estad (2004e) by using the square-root distance from the coast (

√
d) as op-

posed to a linear relation with distance, and including two additional geo-
graphical predictors: north–south slope and east–west slope.

Whereas Benestad (2004e) used longitude and latitude as two indepen-



V
er
si
o
n
0
-9

11.2. GRIDDING THE RESULTS 229

Figure 11.2: Example of GRM results plus residual kriging analysis from Benestad
(2005). Combining GRM with residual kriging yields more detailed maps than plain
kriging.

dent variables representing the coordinates, Benestad (2005, accepted 2007)
used eastings and northings; east–west and north–south displacements from
the central point of the set of locations, in units of 10km. Due to the Earth’s
curvature, a difference of one degree at high latitudes corresponds to a smaller
zonal displacement than at lower latitudes.

The east–west and north–south slopes were estimated through a stepwise
multiple regression fit to Nθ = Nφ = 35 harmonics to the topographical cross-
section profile following equation 11.1 and then solving for the derivatives
according to equation 11.2:

z(θ) = z0 +

Nθ
∑

i=1

[aθ(i) cos(ωθ(i)θ) + bθ(i) sin(ωθ(i)θ)],
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z(φ) = z0 +

Nφ
∑

i=1

[aφ(i) cos(ωφ(i)φ) + bφ(i) sin(ωφ(i)φ)], (11.1)

∂ẑ(θ)

∂θ
=

Nθ
∑

i=1

ωθ(i)[−âθ(i) sin(ωθ(i)θ) + b̂θ(i) cos(ωθ(i)θ)],

∂ẑ(φ)

∂φ
=

Nφ
∑

i=1

ωφ(i)[−âφ(i) sin(ωφ(i)φ) + b̂φ(i) cos(ωφ(i)φ)], (11.2)

Since, spherical coordinates were used, a transformation was done to x-
and y-coordinates following equation 11.2.

dp̂(x)

dx
=

1

a cos(φ)

dp̂(θ)

dθ
,

dp̂(y)

dy
=

1

a

dp̂(φ)

dφ
, (11.3)

The harmonics fit, differentiation, and transformation was done in the
R-environment, using the geoGrad function in the contributed cyclones-
package (version 1.1-4).

The GRMs can be assessed further in split-sample tests, where part of the
data was used for model calibrating (dependent) and the rest as independent
data for evaluation (Benestad, 2004a). Figure 11.3 shows a scatter plot
between the original data and the predicted values for both the dependent
(grey) and independent data (black) and provide a verification of the GRM.

A kriging analysis can be applied to the residuals of the GRM in order
to spatially interpolate the part of the trends that could not be related to
geographical parameters (using the geoR-package from CRAN).

11.2.3 GIS-packages

There are commercial as well as freely available open-source geo-statistical
applications for Geographical Information System (GIS) analysis. There is
a package calles GRASS (http://grass.itc.it/statsgrass/index.html) and an
R-package with the same name, that works as an interface between the ap-
plication and R.
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Figure 11.3: Example of GRM results plus residual kriging analysis from Benestad
(2005).

There are also several R-packages for implementing Krigin, such as geoR,
geoRglm, GeoXp, gstat sgeostat, and spgrass6. Basically, as long as there
are results for a number of locations, it is possible to use GIS-type tools
to produce maps, and the larger number of locations, the more robust the
results.
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Appendix

AMAP demonstration

Listing of R-code used for demonstration at the AMAP workshop in Oslo,
May 14–16, 2007 (the prompt is not shown here):

rm(list=ls()) # clear the memory

gcm.t2m.1<-"pcmdi.ipcc4.ncar_ccsm3_0.sresa1b.run1.monthly.tas_A1.nc"

gcm.t2m.2<-"pcmdi.ipcc4.mpi_echam5.20c3m.run1.monthly.tas_A1.nc"

gcm.t2m.3<-"pcmdi.ipcc4.mpi_echam5.20c3m.run1.daily.tas_A2_1961-1980.nc"

gcm.t2m.4<-"pcmdi.ipcc4.mpi_echam5.sresa1b.run2.daily.tas_A2_2046-2065.nc"

gcm.slp.1<-"pcmdi.ipcc4.mpi_echam5.20c3m.run1.daily.psl_A2_1961-1980.nc"

gcm.slp.2<-"pcmdi.ipcc4.mpi_echam5.sresa1b.run2.daily.psl_A2_2046-2065.nc"

era40.t2m<-"era40_t2m.nc"

era40.slp<-"era40_slp.nc"

# To get the on-line help

help.start()

# Read the CET from the Internet:

cet <- getHadObs()

plotStation(cet)

data(DNMI.slp)

?corField

corField(DNMI.slp,cet,mon=1)

# Read on-line station data from the NARP project

235
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NARP <- getnarp()

print(NARP$name)

nuuk <- getnarp("Nuuk")

plotStation(nuuk)

# Construct a ’station object’:

? station.obj

rnd <- station.obj(x=matrix(rnorm(100*12),100,12),yy=1901:2000,

obs.name="Random",unit="dimensionless",ele=101,

mm=NULL,station=NULL,lat=60,lon=0,alt=NULL,

location="unspecified",wmo.no=NULL,

start=NULL,yy0=NULL,country=NULL,ref=NULL)

plotStation(rnd)

corField(DNMI.slp,rnd,mon=1)

# Retrieve SSTs for the North Atlantic.

print("")

data(DNMI.sst)

corField(DNMI.sst,nuuk,mon=c(12,1,2))

# Field object handling

data(eof.slp)

plotEOF(eof.slp)

SLP <- EOF2field(eof.slp)

corField(SLP,nuuk,mon=1)

# Retrieve and handle any field object:

GCM.t2m.1<-retrieve.nc(gcm.t2m.1,v.nam="tas",x.rng=c(0,40),y.rng=c(60,90))

GCM.t2m.1$yy <- GCM.t2m.1$yy + 2000

mapField(GCM.t2m.1)

mT2m <- meanField(GCM.t2m.1)

map(mT2m)

#-----------------------------------------------------------------

# ESD for Monthly data:

#-----------------------------------------------------------------

# simple ESD:

data(DNMI.t2m)
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eof.t2m.1 <- EOF(DNMI.t2m,mon=1)

plotEOF(eof.t2m.1)

ds.nuuk.1 <- DS(nuuk,eof.t2m.1)

# simple ESD with random values:

ds.rnd <- DS(rnd,eof.t2m.1)

# combinde fields & perform ESD:

T2m.1 <- catFields(DNMI.t2m,GCM.t2m.1)

eof.t2m <- EOF(T2m.1,mon=1)

plotEOF(eof.t2m)

ds.nuuk <- DS(nuuk,eof.t2m)

# read daily data for ERA40

print("")

ERA40.t2m.day<-retrieve.nc(era40.t2m,v.nam="p2t",x.rng=c(0,40),y.rng=c(60,90))

ERA40.t2m <- monthly(ERA40.t2m.day)

eof.t2m.2 <- EOF(ERA40.t2m,mon=1)

plotEOF(eof.t2m.2)

region.t2m <- catFields(DNMI.t2m,lon=c(0,40),lat=c(60,90))

eof.t2m.3 <- EOF(region.t2m,mon=1)

hopen <- getnarp("Hopen")

plotStation(hopen,what="t")

corField(ERA40.t2m,hopen,mon=1)

corField(region.t2m,hopen,mon=1)

ds.hopen.1 <- DS(hopen,eof.t2m.2)

ds.hopen.2 <- DS(hopen,eof.t2m.3)

T2m.eragcm <- catFields(ERA40.t2m,GCM.t2m.1)

T2m.dnmigcm <- catFields(region.t2m,GCM.t2m.1)

eof.T2m.1 <- EOF(T2m.eragcm,mon=1)

eof.T2m.2 <- EOF(T2m.dnmigcm,mon=1)

ds.Hopen.1 <- DS(hopen,eof.T2m.1)

ds.Hopen.2 <- DS(hopen,eof.T2m.2)

GCM.t2m.2<-retrieve.nc(gcm.t2m.2,v.nam="tas",x.rng=c(0,40),y.rng=c(60,90))
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print(summary(GCM.t2m.2))

print(table(GCM.t2m.2$id.t))

GCM.t2m.2$id.t[] <- "ECHAM5"

attr(GCM.t2m.2$tim,"unit") <- "month"

T2m.eragcm <- catFields(ERA40.t2m,GCM.t2m.2)

T2m.dnmigcm <- catFields(region.t2m,GCM.t2m.2)

eof.T2m.3 <- EOF(T2m.eragcm,mon=1)

eof.T2m.4 <- EOF(T2m.dnmigcm,mon=1)

ds.Hopen.3 <- DS(hopen,eof.T2m.3)

ds.Hopen.4 <- DS(hopen,eof.T2m.4)

hopen.1 <- ds2station(ds.Hopen.1)

hopen.2 <- ds2station(ds.Hopen.2)

hopen.3 <- ds2station(ds.Hopen.3)

hopen.4 <- ds2station(ds.Hopen.4)

plotStation(hopen.3,col="blue",what="t",type="b",pch=20,lty=1,lwd=1,

trend=FALSE,std.lev=FALSE)

plotStation(hopen.4,col="red",add=TRUE,what="t",type="b",pch=20,lty=1,

lwd=1,trend=FALSE,std.lev=FALSE)

plotStation(hopen.1,col="lightblue",add=TRUE,what="t",type="b",pch=21,

lty=1,lwd=1,trend=FALSE,std.lev=FALSE)

plotStation(hopen.2,col="pink",add=TRUE,what="t",type="b",pch=21,lty=1,

lwd=1,trend=FALSE,std.lev=FALSE)

plotStation(hopen,add=TRUE,what="t",type="b",pch=19,lty=3,lwd=1,

trend=FALSE,std.lev=FALSE)

#------------------------------------------------------------------

# ESD for Daily data:

#------------------------------------------------------------------

data(oslo.dm)

ERA40.t2m.day<-retrieve.nc(era40.t2m,v.nam="p2t",x.rng=c(0,40),

y.rng=c(50,70))

GCM.t2m.day.1<-retrieve.nc(gcm.t2m.3,v.nam="tas",x.rng=c(0,40),

y.rng=c(50,70))

GCM.t2m.day.2<-retrieve.nc(gcm.t2m.4,v.nam="tas",x.rng=c(0,40),

y.rng=c(50,70))

T2m.day <- catFields(GCM.t2m.day.1,GCM.t2m.day.2,demean=FALSE)
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T2m.day <- catFields(ERA40.t2m.day,T2m.day)

eof.t2m.day <- EOF(T2m.day,mon=2)

ds.oslo <- DS(oslo.dm,eof.t2m.day)

# Analog model for preciptation

library(anm)

ERA40.slp.day<-retrieve.nc(era40.slp,v.nam="slp",x.rng=c(0,40),

y.rng=c(50,70))

GCM.slp.1 <- retrieve.nc(gcm.slp.1,v.nam="psl",x.rng=c(0,40),

y.rng=c(50,70))

GCM.slp.2 <- retrieve.nc(gcm.slp.2,v.nam="psl",x.rng=c(0,40),

y.rng=c(50,70))

SLP.day <- catFields(GCM.slp.1,GCM.slp.2,demean=FALSE)

SLP.day <- catFields(ERA40.slp.day,SLP.day)

eof.slp.day <- EOF(SLP.day,mon=2)

anm.method <- "anm.weight"

param <- "precip"

a.lm <- DS(preds=eof.slp.day,dat=oslo.dm,

plot=FALSE,lsave=FALSE,param=param,

ldetrnd=FALSE, rmac=FALSE)

i.eofs <- as.numeric(substr(names(a.lm$step.wise$coefficients)[-1],2,3))

a.mam <- DS(preds=eof.slp.day,dat=oslo.dm,i.eofs=i.eofs,

method=anm.method,swsm="none",

predm="predictAnm",param=param,

lsave=FALSE,ldetrnd=FALSE,rmac=FALSE)

ictl <- a.mam$yy.gcm <= 2000

dT<- mean(ds.oslo$pre.gcm[!ictl],na.rm=TRUE) -

mean(ds.oslo$pre.gcm[ictl],na.rm=TRUE)

dP <- 0.20*mean(oslo.dm$precip,na.rm=TRUE)

# Downscale PDF.

a<-DSpdf.exp(oslo.dm,dT=dT,dP=dP)

F1<- list(x=a$x,P=a$Fx.obs)

F2<- list(x=a$x,P=a$Fx.chg)

y.ctl<-CDFtransfer(Y=a.mam$pre.gcm[ictl],CDF.2=F1,plot=TRUE)

y.sce<-CDFtransfer(Y=a.mam$pre.gcm[!ictl],CDF.2=F2,plot=TRUE)
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plot(c(y.ctl,y.sce),pch=19,cex=0.7)

points(y.ctl,pch=19,col="grey",cex=0.7)

Some of these lines are run by typing demo(ESD.demo).
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General ESD-script

rm(list=ls())

library(clim.pact)

sdate2yymmdd <- function(sdate) {

yy <- as.numeric(substr(sdate,1,4))

mm <- as.numeric(substr(sdate,6,7))

dd <- as.numeric(substr(sdate,9,10))

yymmdd <- data.frame(year=yy,month=mm,day=dd)

invisible(yymmdd)

}

ds.one <- function(ele=101,cmons=1:12,silent=FALSE,new.plot=TRUE,

do.20c=TRUE,do.a1b=TRUE,qc=FALSE,

scen="sresa1b",post=FALSE,passwd=NULL,

predictand = "narp",station="Tasiilaq",

test=FALSE,replace=NULL,ipcc.ver="AR4.",

off=FALSE,LINPACK=TRUE,downloads.since=NULL,

C20="20c3m",

dir="data/IPCC_AR4/GCMs/",op.path="output",

v.names=c(’tas’,’pr’),force=FALSE) {

if (!do.20c) C20 <- NULL

if ( (op.path!="./") & !exists(op.path) ) {

print(paste("Create new directory (1):",op.path))

dir.create( op.path )

}

v.nam <- switch(as.character(ele),’101’=v.names[1],’601’=v.names[2])

print("Get ERA40")

if (ele==101) {

load("ERA40_t2m_mon.Rdata")

era40.t2m <- catFields(t2m,lon=c(-90,50),lat=c(40,75));rm(t2m)

} else if (ele==601) {

load("ERA40_prec_mon.Rdata")

era40.t2m <- catFields(prec,lon=c(-90,50),lat=c(40,75));rm(prec)

era40.t2m$dat <- era40.t2m$dat * 1.599876e-05/0.3675309

}
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#print("Get NCEP")

#ncep.t2m <- retrieve.nc("/data/NCEP/air.mon.mean.nc")

gcms <- list.files(path=dir,pattern=v.nam)

print(gcms)

gcms <- gcms[grep(".nc",gcms)]

gcms <- gcms[grep(v.nam,gcms)]

if (length(grep(".nc.part",gcms))>0) gcms<-gcms[-grep(".nc.part",gcms)]

if (!is.null(C20)) gcms1<-reverse(gcms[grep(C20,lower.case(gcms))]) else

gcms1 <- NULL

gcms2 <- reverse(gcms[grep(scen,gcms)])

if (station=="Vardoe") {

if (!is.null(C20)) gcms1 <- gcms1[-15]

gcms2 <- gcms2[-10]

}

if (test) {

if (!is.null(replace)) {

print(paste("source(",replace,")"))

source(replace)

}

if (!is.null(C20)) gcms1 <- gcms1[14]

gcms2 <- gcms2[1]

}

if (!is.null(downloads.since)) {

print(paste("Only inlcude data downloaded since",downloads.since))

if (!is.null(C20)) times.gcms1 <-

substr(as.character(file.info(paste(dir,gcms1,sep="")))$mtime,1,10)

times.gcms2 <-

substr(as.character(file.info(paste(dir,gcms2,sep=""))$mtime),1,10)

print(times.gcms2)

since.date <- sdate2yymmdd(downloads.since)

if (!is.null(C20)) {

i1 <- ((sdate2yymmdd(times.gcms1)$year == since.date$year) &

(sdate2yymmdd(times.gcms1)$month == since.date$month) &

(sdate2yymmdd(times.gcms1)$day >= since.date$day) ) | (

(sdate2yymmdd(times.gcms1)$year == since.date$year) &
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(sdate2yymmdd(times.gcms1)$month > since.date$month) ) |

(sdate2yymmdd(times.gcms1)$year > since.date$year)

print(paste(sum(i1),"runs since",since.date$day,

since.date$month,since.date$year))

}

i2 <- ((sdate2yymmdd(times.gcms2)$year == since.date$year) &

(sdate2yymmdd(times.gcms2)$month == since.date$month) &

(sdate2yymmdd(times.gcms2)$day >= since.date$day) ) | (

(sdate2yymmdd(times.gcms2)$year == since.date$year) &

(sdate2yymmdd(times.gcms2)$month > since.date$month) ) |

(sdate2yymmdd(times.gcms2)$year > since.date$year)

if (!is.null(C20)) gcms1 <- gcms1[i1]

print(paste(sum(i2),"runs since",since.date$day,

since.date$month,since.date$year))

gcms2 <- gcms2[i2]

}

if (!is.null(C20)) print(gcms1)

if (!silent) { print("GCMS:"); print(gcms2)}

if (class(station)[1]=="character") {

print(station)

if (lower.case(predictand)=="nordklim") {

obs <- getnordklim(station,ele=ele)

} else if (lower.case(predictand)=="nacd") {

obs <- getnacd(station,ele=ele)

} else if (lower.case(predictand)=="narp") {

obs <- getnarp(station,ele=ele)

}

} else if (class(station)[1]=="station") {

print(paste("Use given station object",station$location))

obs <- station

station <- obs$location

}

print(obs$location)

if (sum(is.na(obs$val))>0) obs$val[length(obs$yy),] <- NA

x.rng <- c(max(c(obs$lon-30,-180)),min(c(obs$lon+15,180)))
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y.rng <- c(max(c(obs$lat-15,-90)), min(c(obs$lat+15,90)))

print(x.rng); print(y.rng)

slsh <- instring("/",obs$location)

if (slsh[1] > 0) {

obs$location <- substr(obs$location,1,slsh[1]-1)

}

fname.png <- paste("ds_one_",ipcc.ver,predictand,strip(obs$location),

obs$station,ele,".png",sep="")

print(fname.png)

if (options()$device=="png") bitmap(file=fname.png,type="png256",res=300) else

newFig()

plot(c(1890,2100),c(min(rowMeans(obs$val[,cmons]),na.rm=TRUE)-2,

max(rowMeans(obs$val[,cmons]),na.rm=TRUE)+7),

type="n",main=obs$location,ylab=obs$obs.name,xlab="time")

grid()

obs.ts <- plotStation(obs,what="t",add=TRUE,col="grey20",type="p",pch=19,

l.anom=FALSE,mon=cmons,trend=TRUE,std.lev=FALSE)

print(obs$location)

i.gcm <- 0

if (!is.null(C20)) {

for (gcm in gcms1) {

i.gcm <- i.gcm + 1

print(gcm)

dot <- instring(".",gcm)

if (length(dot)>=3) {

run<- substr(gcm,dot[4]+1,dot[4]+4)

gcm.nm <- substr(gcm,dot[2]+1,dot[3]-1)

} else {

dash <- instring("_",gcm)

gcm.nm <- substr(gcm,1,dash[1]-1)

run<- substr(gcm,dash[1]+1,dash[2]-1)

}

run<- substr(gcm,dot[4]+1,dot[4]+4)

#print(obs$location)
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slsh <- instring("/",obs$location)

if (slsh[1] > 0) {

obs$location <- substr(obs$location,1,slsh[1]-1)

}

#print(obs$location)

subdir <- paste(predictand,strip(obs$location),obs$station,ele,sep="")

fname <- paste(op.path,"/",subdir,"/ds_one_",ipcc.ver,predictand,

strip(obs$location),obs$station,ele,".",

gcm.nm,"c20.",run,".",sep="")

if (!file.exists( paste(op.path,"/",subdir,sep="") )) {

if (!silent) print(paste("Creating (2)",op.path,"/",subdir,sep=""))

dir.create( paste(op.path,"/",subdir,sep="") )

} else if (!silent) print(paste(op.path,"/",subdir," exsists...",sep=""))

if (!silent) print(fname)

if (!file.exists(paste(fname,"txt",sep="")) &

!file.exists(paste(fname,"Rdata",sep="")) | (force)) {

GCM <- retrieve.nc(paste(dir,gcm,sep=""),x.rng=x.rng,

y.rng=y.rng,v.nam=v.nam,silent=FALSE)

class(GCM) <- c("field","monthly.field.object")

attr(GCM$tim,"unit") <- "month"; GCM$dd[] <- 15

ds.station <- objDS(era40.t2m,GCM,obs,plot=FALSE,

qualitycontrol=qc,silent=silent,LINPACK=LINPACK)

x <- ds.station$station

print(paste("Saving in",fname))

save(file=paste(fname,"Rdata",sep=""),x,ds.station)

ds.scen <- data.frame(Year=x$yy,

Jan=round(x$val[,1],2),Feb=round(x$val[,2],2),

Mar=round(x$val[,3],2),Apr=round(x$val[,4],2),

May=round(x$val[,5],2),Jun=round(x$val[,6],2),

Jul=round(x$val[,7],2),Aug=round(x$val[,8],2),

Sep=round(x$val[,9],2),Oct=round(x$val[,10],2),

Nov=round(x$val[,11],2),Dec=round(x$val[,12],2))

write.table(ds.scen,file=paste(fname,"txt",sep=""),

row.names = FALSE,quote = FALSE, sep="\t ")

} else {

load(paste(fname,"Rdata",sep=""))

print(paste(fname,"exists, reading from file."))
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}

plotStation(x,what="t",add=TRUE,col="grey40",type="l",lwd=2,

lty=1,l.anom=FALSE,mon=cmons,trend=FALSE,std.lev=FALSE)

plotStation(obs,what="t",add=TRUE,col="grey20",type="p",pch=19,

l.anom=FALSE,mon=cmons,trend=TRUE,std.lev=FALSE)

plotStation(obs,what="t",add=TRUE,col="grey20",type="l",lwd=1,lty=3,

l.anom=FALSE,mon=cmons,trend=TRUE,std.lev=FALSE)

}

}

print(paste("Scenarios & ipcc version:",ipcc.ver))

i.gcm <- 0

for (gcm in gcms2) {

i.gcm <- i.gcm + 1

print(gcm)

dot <- instring(".",gcm)

if (length(dot)>=3) {

run<- substr(gcm,dot[4]+1,dot[4]+4)

gcm.nm <- substr(gcm,dot[2]+1,dot[3]-1)

} else {

dash <- instring("_",gcm)

gcm.nm <- substr(gcm,1,dash[1]-1)

run<- substr(gcm,dash[1]+1,dash[2]-1)

}

slsh <- instring("/",obs$location)

subdir<-paste(predictand,strip(obs$location),obs$station,ele,sep="")

fname <- paste(op.path,"/",subdir,"/ds_one_",ipcc.ver,

predictand,strip(obs$location),

obs$station,ele,".",gcm.nm,scen,".",run,".",sep="")

if (!silent) print(fname)

if (!file.exists(paste(fname,"txt",sep="")) &

!file.exists(paste(fname,"Rdata",sep="")) | (force)) {

GCM <- retrieve.nc(paste(dir,gcm,sep=""),x.rng=x.rng,

y.rng=y.rng,v.nam=v.nam,silent=TRUE)

class(GCM) <- c("field","monthly.field.object")

attr(GCM$tim,"unit") <- "month"; GCM$dd[] <- 15
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ds.station <- objDS(era40.t2m,GCM,obs,plot=FALSE,

qualitycontrol=qc,silent=silent)

x <- ds.station$station

x$grade.pattern <- min(

c(ds.station$Jan$grade.pattern,ds.station$Feb$grade.pattern,

ds.station$Mar$grade.pattern,ds.station$Apr$grade.pattern,

ds.station$May$grade.pattern,ds.station$Jun$grade.pattern,

ds.station$Jul$grade.pattern,ds.station$Aug$grade.pattern,

ds.station$Sep$grade.pattern,ds.station$Oct$grade.pattern,

ds.station$Nov$grade.pattern,ds.station$Dec$grade.pattern))

x$grade.trend <- min(c(

ds.station$Jan$grade.trend,ds.station$Feb$grade.trend,

ds.station$Mar$grade.trend,ds.station$Apr$grade.trend,

ds.station$May$grade.trend,ds.station$Jun$grade.trend,

ds.station$Jul$grade.trend,ds.station$Aug$grade.trend,

ds.station$Sep$grade.trend,ds.station$Oct$grade.trend,

ds.station$Nov$grade.trend,ds.station$Dec$grade.trend))

x.ts <- plotStation(x,what="n",add=TRUE,col="steelblue",

type="l",lwd=2,lty=1,l.anom=FALSE,

mon=cmons,trend=TRUE,std.lev=FALSE)

if (!test) x$val <- x$val - x.ts$trend[1] +

obs.ts$trend[length(obs.ts$trend)]

print(paste("Saving in",fname))

if (!file.exists( paste(op.path,"/",subdir,sep="") )) {

if (!silent) print(paste("Creating (3)",op.path,"/",

subdir,sep=""))

dir.create( paste(op.path,"/",subdir,sep="") )

} else if (!silent) print(paste(op.path,"/",subdir,

" exsists...",sep=""))

save(file=paste(fname,"Rdata",sep=""),x,ds.station)

ds.scen <- data.frame(Year=x$yy,

Jan=round(x$val[,1],2),Feb=round(x$val[,2],2),

Mar=round(x$val[,3],2),Apr=round(x$val[,4],2),

May=round(x$val[,5],2),Jun=round(x$val[,6],2),

Jul=round(x$val[,7],2),Aug=round(x$val[,8],2),

Sep=round(x$val[,9],2),Oct=round(x$val[,10],2),

Nov=round(x$val[,11],2),Dec=round(x$val[,12],2))

write.table(ds.scen,file=paste(fname,"txt",sep=""),

row.names = FALSE,quote = FALSE, sep="\t ")
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} else {

print(paste(fname,"exists, skipping ESD for this GCM."))

load(paste(fname,"Rdata",sep=""))

}

plotStation(x,what="t",add=TRUE,col="steelblue",type="l",lwd=2,

lty=1,l.anom=FALSE,mon=cmons,trend=TRUE,std.lev=FALSE)

}

print("Add observations...")

plotStation(obs,what="t",add=TRUE,col="grey20",type="p",pch=19,

l.anom=FALSE,mon=cmons,trend=TRUE,std.lev=FALSE)

print("Finished plotting")

if (options()$device=="X11") {

dev.copy2eps(file=paste("ds_one_",ipcc.ver,obs$location,obs$ele,

".eps",sep=""))

dev2bitmap(file=paste("ds_one_",ipcc.ver,obs$location,obs$ele,

".png",sep=""))

}

if (options()$device=="png") dev.off()

if (post) {

a <- Sys.info()

script <- rep("",12)

script[1] <- "#!/usr/bin/ksh"

script[2] <- paste("echo putftp ",fname.png)

script[3] <- "echo FTP: put data file to lightning.."

script[4] <- "cat<<eof | ftp -in"

script[5] <- "open lightning"

script[6] <- paste("user",a[7],passwd)

script[7] <- "cd pub_ftp"

script[8] <- "pwd"

script[9] <- paste("mput ",fname.png)

script[10] <- "ls"

script[11] <- "quit"

script[12] <- "eof"

writeLines(file="ftpscript.sh",script)

system("chmod a+x ftpscript.sh")
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system("./ftpscript.sh")

}

if (test) invisible(x)

print("HERE")

}
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Wetterhall, F., Bárdossy, A., Chen, D., Halldin, S., and Xu, C.-Y. 2006. Daily
precipitation downscaling techniques in different climate regions in China.
Water Resources research, 42(W11423), doi:10.1029/2005WR004573.

Wight, J.R., and Hanson, C.L. 1991. Use of stochastically generated weather
records with rangeland simulation models. Journal of Range Management,
44, 282–285.

Wilby, R.L. 1997. Non-stationarity in daily precipitation series: Implications
for GCM down-scaling using atmospheric circulation indices. International
Journal of Climatology, 17, 439–454.

Wilby, R.L., and Harris, I. 2006. A framework for assessing uncertainties
in climate change impacts: Low-flow scenarios for the River Thames, UK.
Water Resources Research, 42(doi: 10.1029/2005WR004065).

Wilby, R.L., Charles, S.P., Zortia, E., Timbal, B., Whetton, P., and Mearns,
L.O. Guidelines for Use of Climate Scenarios Developed from Statistical
Downscaling Methods. Supporting material of the Intergovernmental Panel
on Climate Change. Task group on Data and Scenario Support for Impacts
and Climate Analysis.



V
er
si
o
n
0
-9

268 BIBLIOGRAPHY

Wilby, R.L., Hassan, H., and Hanaki, K. 1998. Statistical downscaling of hy-
drometeorological variables using general circulation model output. Jour-
nal of Hydrology, 205, 1–19.

Wilks, D. S., and Wilby, R. L. 1999. 1999. The weather generation game: a
review of stochastic weather models. Progress in Physical Geography, 23,
329.

Wilks, D.S. 1992. Adapting stochastic weather generation algorithms for
climate change studies. Climatic Change, 22, 67–84.

Wilks, D.S. 1995. Statistical Methods in the Atmospheric Sciences. 467.

Yan, Z., Bate, S., Chandler, R.E., Isham, V., and Wheater, H. 2006. Changes
in extreme wind speeds in NW Europe simulated by generalized linear
models. Theoretical and Applied Climatology, 83, 121–137.

Yang, C., Chandler, R.E., Isham, V.S., and Wheather, H.S. 2005. Spatial-
temporal rainfall simulation using generalized linear models. Water Re-
sources Research, 41, doi:10.1029/2004WR003739.

Zemansky, M.W., and Dittman, R.H. 1981. Heat and Thermodynamics. 6
edn.

Zorita, E., and von Storch, H. 1997. A survey of statistical downscaling
results. Tech. rept. 97/E/20. GKSS.

Zorita, E., and von Storch, H. 1999. The Analog Method as a Simple Statisti-
cal Downscaling Technique: Comparison with More Complicated Methods.
Journal of Climate, 12, 2474–2489.

Zorita, E., Hughes, J.P., Lettermaier, D.P., and von Storch, H. 1995. Stochas-
tic Characterization of Regional Circulation Patterns for Climate Model
Diagnosis and Estimation of Local Precipitation. Journal of Climate,
8(May), 1023–1042.



V
er
si
o
n
0
-9

Index

H0, 29
R2, 136
R2 score, 142
’self-organising feature maps, 122

common EOF method, 182
multivariate regression, 91

alternative hypothesis, 29
analog model, 112
ANN, 119
anomalous correlation, 142
anomaly, 26, 33
AOI, 62
Arctic Oscillation Index, 62
artificial neural networks, 119
assimilation, 37

basis maps, 67
Bayes’ theorem, 188, 200
Bayesian, 199
bootstrap estimates, 128

calibration interval, 21
calibration period, 21
Canonical Correlation Analysis, 94
Canonical variates, 94
CART, 121
CCA, 94
central limit theorem, 189
Classification and Regression Trees anal-

ysis, 121

clim.pact, 56
climatology, 25, 33
Cluster analysis, 117
cluster analysis, 117
co-linearity, 93
common EOF, 77, 178
complex EOFs, 75
conditional probability, 188
confidence interval, 134
confidence limits, 128, 134
continuity equation, 44
continuous distribution, 188
conversion: mm/mercury to hPa, 31
correlation map, 177
correlation maps, 134
CRAN, 14
critical region, 128
cross-validation, 143, 175
cumugram, 193
curl, 43

data space, 38
decomposition, 67
dendrogram, 117
Description of change, 41, 42, 129
dimensional analysis, 161
distributions, 187
divergence, 43
downscaling, 14
dynamical downscaling, 36

269



V
er
si
o
n
0
-9

270 INDEX

eigenvalue uncertainty, 68
El Niño, 62
Empirical Orthogonal Functions, 66,

67
empirical probability distribution, 189
empirical-statistical downscaling, 37
EOF, 66
EOFs, 67
ergodicity, 195
ESD, 37
ESD; physics-inspired, 46
Eulerian reference, 43
extended EOFs, 76, 83

f-ratio, 136
f-statistics, 136
field, 24
frequency-domain EOFs, 76

gamma distribution, 189
gamma function, 191
Gaussian distribution, 189
GCM, 20
general circulation model, 20
General linear models, 198
generalised extreme value, 193
geographical regression model, 228
geographical weighting, 73
geostrophic balance, 43
geostrophic flow, 43
GEV, 193
GIS, 230
GLM, 100, 198
global climate models, 19
gridded, 24
gridded data, 88
GRM, 228
Grosswetterlagen, 116

histogram, 188
historical simulation, 160
historical study, 160
Huth’s paradox, 172, 183
hypothesis testing, 134

iid-test, 196, 209
independent data, 143
inflation, 157

jack-knife, 143

Karl Popper, 135
kriging, 226

L-estimates, 187
lagged-correlation, 88
Lamb weather types, 116
Langrangian reference, 43
large scale, 15
loading vector, 67

M-estimates, 187
matrices, 24
matrix, 24
mean, 25, 33
minimum scale, 48
minimum temperature, 21
mode, 22, 75
Model representation, 41, 129
Monte Carlo integrations, 128
Monte-Carlo simulations, 219
monthly values, 25
MSR, 136
multi-variate, 28
multiple regression, 28
multivariate methods, 90
MVR, 91

NAO, 15, 64



V
er
si
o
n
0
-9

INDEX 271

NAOI, 62
nested modelling, 36
neural nets, 119
neural network, 121
noise, 46, 157
non-parametric tests, 128
normal distribution, 189
North Atlantic Oscillation, 15, 64
North Atlantic Oscillation index, 62
null distribution, 29
null hypothesis, 29
numerical downscaling, 36
numerical mode, 49

one-sided, 128
optimal domain, 49
optimal fit, 22
orthogonal, 22, 67
outliers, 186

p-value, 128
parameterisation schemes, 54
parametric tests, 128
PC, 67
PCA, 40, 66, 67
PDF, 25, 51, 187, 188

downscaling, 210
PDFs, 187
perfect model simulations, 159
perfect model study, 159
phase space, 112
physiography, 30
pre-processing, 56
predictand, 27
predictor, 26
predictor domain, 163
predictor pattern, 88, 90
principal component, 67

Principal Component Analysis, 67
principal component analysis, 40
principal components, 67
probability, 187
probability density function, 25, 188
probability density functions, 187
propagating signals, 88

quality, 128

R-estimates, 187
R-examples, 33, 57, 58, 64, 82, 83, 93,

102, 103, 105, 107, 108, 124,
147, 149, 152, 154, 167, 168,
183, 209–211, 240, 249

re-sampling tests, 128
Regression, 91
regression sum of squares, 136
rejection level, 128
rejection region, 128
resistant methods, 186
return period, 195
return values, 195
Richardson type, 218
RMSE, 22, 142
robust methods, 187
root-mean-square-error, 22, 142
Rotated EOFs, 75

scatter plot, 142
seasonal trend test, 137
self-organising-maps, 122
series, 22, 31
signal, 157
Singular Vector Decomposition, 91
skillful scale, 47
small scale, 15
SOFMs, 122
SOI, 62



V
er
si
o
n
0
-9

272 INDEX

SOMs, 122
Southern Oscillation Index, 62
spatial autocorrelation, 65
spatial coherence, 65
spatial mean, 25
spatial resolution, 19
standard deviation, 26
station series, 22
Stationarity, 41, 44, 129
stationarity, 158
sum of squared differences, 136
SVD, 91, 98

t-distribution, 135
t-test, 135
teleconnections, 88
temporal mean, 25
test statistics, 29
time series, 22
time structure, 17
total value, 24, 31
trend analysis, 129
trend test

Mann-Kendall, 132
Spearman, 132
t-test, 133

two-sided, 128

uncertainties, 169
univ-variate, 28
upper tail, 196

Varimax rotation, 75
vector, 23

weather generators, 219
weather types, 116
weather/climate station, 23


