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Summary In this paper, we propose a new method for modelling precipitation in Sweden.
We consider a chain dependent stochastic model that consists of a component that models
the probability of occurrence of precipitation at a weather station and a component that
models the amount of precipitation at the station when precipitation does occur. For the
first component, we show that for most of the weather stations in Sweden a Markov chain
of an order higher than one is required. For the second component, which is a Gaussian
process with transformed marginals, we use a composite of the empirical distribution
of the amount of precipitation below a given threshold and the generalized Pareto distri-
bution for the excesses in the amount of precipitation above the given threshold. The
derived models are then used to compute different weather indices. The distribution of
the modelled indices and the empirical ones show good agreement, which supports the
choice of the model.
ª 2008 Elsevier B.V. All rights reserved.
Introduction

Realistic sequences of meteorological variables such as pre-
cipitation are key inputs in many hydrologic, ecologic and
agricultural models. Simulation models are needed to model
stochastic behavior of climate system when historical re-
8 Elsevier B.V. All rights reserved
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cords are of insufficient duration or inadequate spatial
and/or temporal coverage. In these cases synthetic se-
quences may be used to fill in gaps in the historical record,
to extend the historical record, or to generate realizations
of weather that are stochastically similar to the historical
record. A weather generator is a stochastic numerical model
that generates daily weather series with the same statistical
properties as the observed ones, see Liao et al. (2004).

In developing the weather generator, the stochastic
structure of the series is described by a statistical model.
Then, the parameters of the model are estimated using
the observed series. This allows us to generate arbitrarily
.
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Figure 1 Location of the stations.

Table 1 Names of weather stations.

Number Name

1 Lund
2 Bolmen
3 Hanö
4 Borås
5 Varberg
6 Ungsberg
7 Säffle
8 Söderköping
9 Stockholm

10 Malung
11 Vattholma
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long series with stochastic structure similar to the real data
series.

Parameter estimation of stochastic precipitation models
has been a topic of intense research in the last 20 years. The
estimation procedures are intrinsically linked to the nature
of the precipitation model itself and the timescale used to
represent the process. There are models which describe
the precipitation process in continuous time and models
describing the probabilistic characteristics of precipitation
accumulated on a given time period, say daily or monthly
totals. Different reviews of the available models have been
presented: see for example Woolhiser (1992), Cox and Isham
(1988) and Smith and Robinson (1997).

Continuous time models for a single site with parameters
related to the underlying physical precipitation process are
particularly important for the analysis of data at short time-
scales, e.g. hourly. Some of these models are described in
Rodrı́guez-Iturbe et al. (1987, 1988) and Waymire and Gupta
(1981).

When only accumulated precipitation amounts for a par-
ticular time period (daily) are recorded then empirical sta-
tistical models, based on stochastic models that are
calibrated from actual data are appealing. Empirical statis-
tical models for generating daily precipitation data at a gi-
ven site can be classified into four different types, chain
dependent or two-part models, transition probability matrix
models, resampling models and ARMA time series models,
see Srikanthan and McMahon (2001) for a complete review
of the different models.

A generalization of the precipitation models for a single
site is the spatial extension of these models for multiple
sites, to try to incorporate the intersite dependence but
preserving the marginal properties at each site. A more
ambitious task is the modelling of precipitation continuously
in time and space and original work on these type of models
based on point process theory was presented by LeCam
(1961) and further developed by Waymire et al. (1984)
and Cox and Isham (1994). Mellor (1996) has developed
the modified turning bands model which reproduces some
of the physical features of precipitation fields in space as
rainbands, cluster potential regions of rain cells.

In this study we concentrate on the chain-dependent
model for the daily precipitation in Sweden which consists
of two steps, first a model for the sequence of wet/dry days
and second, a model for the amount of precipitation for the
wet days. For the first, we use high-order Markov chains and
for the second we introduce a composite model that incor-
porates the empirical distribution and the generalized Pare-
to distribution.
12 Myskelåsen
13 Härnösand
14 Rösta
15 Piteå
16 Stensele
17 Haparanda
18 Kvikkjokk
19 Pajala
20 Karesuando
Data

Precipitation data from 20 stations in Sweden have been
used in the studies presented in this paper. The locations
are shown in Fig. 1 and the names of the stations are given
in Table 1. The data consist of accumulated daily precipita-
tion collected during 44 years starting on the 1st of January
1961 and ending the 31st of December 2004 and are pro-
vided by the Swedish Meteorological and Hydrological Insti-
tute (SMHI). The number of missing observations in all
stations is generally low (<5%). The time plots of the annual
number of wet days (above the threshold 0.1 mm) at the 20
stations are presented in Fig. 2.
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Figure 2 Time plot of annual number of wet days.
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Time plots of annual number of wet days showed that the
precipitation regime in some stations (namely, Söderköp-
ping, Rösta and Stensele) contains possible trends. The re-
sults presented in the next sections refer to the whole
period of data from all stations, but attention should be
paid when we refer to the above mentioned stations. In
Fig. 3, time plots of the annual amount of precipitation of
the wet days are presented. The total amounts of precipita-
tion seem to be stationary over the different years.

Model

To model precipitation in Sweden, we have decided to use a
chain dependent model. The first part of the model can be
dealt with using Markov chains. Gabriel and Neumann (1962)
used a first-order stationary Markov chain. The models have
since been extended to allow for non-stationarity, both by
fitting separate chains to different periods of the year and
by fitting continuous curves to the transition probabilities,
see Stern and Coe (1984) and references within. The order
of Markov chain required has also been discussed exten-
sively, for example Chin (1977) and references therein, with
the obvious conclusion that different sites require different
orders. Still, the first order Markov chains are a popular
choice since they have been shown to perform well for a
wide range of different climates, see for example Bruhn
et al. (1980), Lana and Burgueno (1998), Aksoy and Bayazit
(2000) and Castellvi and Stockle (2001). The main deficiency
associated with the use of first order models is that long dry
spells are not well reproduced, see Racsko et al. (1991) and
Guttorp (1995).

To model the amount of precipitation that has occurred
during a wet day, different models have been proposed in
the literature all of which assume that the daily amounts
of precipitation are independent and identically distributed.
Stidd (1973) and Hutchinson (1995) have proposed a trun-
cated normal model for the amount of precipitation with
a time dependent parameter, while the Gamma and Weibull



1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)
Years

Lund

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Bolmen

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Hanö

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Borås

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Varberg

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Ungsberg

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Säffle

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Söderköping

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Stockholm

1980 2000

500

1000

1500
am

ou
nt

 o
f p

re
ci

p.
 (m

m
)

Years

Malugn

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Vattholma

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Myskåsen

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Härnösand

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Rösta

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Piteå

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Stensele

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Haparanda

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Kvikkjokk

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Pajala

1980 2000

500

1000

1500

am
ou

nt
 o

f p
re

ci
p.

 (m
m

)

Years

Karesuando

Figure 3 Time plot of annual amount of precipitation.
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distributions have been selected by Geng et al. (1986) as
well as Selker and Haith (1990), because of their site-spe-
cific shape.

In this study, we model the occurrence of wet/dry days
using Markov chains of higher order and for the amount of
precipitation we use a composite model, consisting of the
empirical distribution function for values below a threshold
and the distribution of excesses for values above the given
threshold. Such a model is more flexible, describes better
the tail of the distribution and additionally allows for
dependence in the precipitation process.

Let Zt be the precipitation at a certain site at time t
measured in days. Then, a chain-dependent model for the
precipitation is given by

Zt ¼ XtWt;

where Xt and Wt are stochastic processes such that Xt takes
values in {0,1} and Wt takes values in Rþ n 0. The processes
Xt and Wt will be referred to as the occurrence of precipi-
tation and the amount of precipitation process,
respectively.

The approach presented in this study provides a mecha-
nism to make predictions of precipitation in time. This is par-
ticularly important for many applications in hydrology,
ecology and agriculture. For example, at a monthly level,
the amount of precipitation and the probability and length
of a dry period are required quantities for many applications.
Models for the occurrence of precipitation

Let fXt; t ¼ t1; . . . ; tNg denote the sequence of daily precip-
itation occurrence, i.e. Xt ¼ 1; indicates a wet day and
Xt ¼ 0; a dry day. A wet day in the context of this study, oc-
curs when at least 0.1 mm of precipitation was recorded by
the rain gauge. The level has been chosen above zero in or-
der to avoid identifying dew and other noise as precipitation
and to also avoid difficulties arising from the inconsistent
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recording of very small precipitation amounts. Moreover,
daily precipitation amounts of less than 0.1 mm can have
relatively large observational errors, and including them
would cause a significant change in the estimated transition
probabilities of the occurrences. As a consequence this
introduces additional errors into the fitted models. The
model is fitted over different periods of the year, that is
subsets of the N days of the year, that may be assumed
stationary.

Before we continue any further we need to introduce
some notation. Let S ¼ f0; 1g denote the state space of
the k-Markov chain Xt. The elements of S are called letters
and an ordering of letters w 2 Sl ¼ S� � � � � S is called a
word of length l, while the words composed of the letters
from position i to j in w for some 1 6 i 6 j 6 l, are denoted
as wj

i ¼ ðwi;wiþ1; . . . ;wjÞ. Finally, for k 6 l let
skðwÞ ¼ wl

l�kþ1 denote the k-tail of the w word, i.e. skðwÞ
denotes the last k letters of w. If no confusion will arise
when k 6 j� i, we also write skðwjÞ instead of skðwj

iÞ.
It is assumed that the process Xt is a k-Markov chain: a

model completely characterized by the transition
probability

pw;jðtÞ :¼ PðXt ¼ jjskðXt�1Þ ¼ wÞ; j 2 S; t ¼ t1; . . . ; tN;

where w is a word of length k and Xt�1 ¼ f. . . ; Xt�2; Xt�1g is
the whole process up to t� 1 so skðXt�1Þ is the last k days
up to and including Xt�1; that is, skðXt�1Þ ¼ ðXt�k; . . . ; Xt�1Þ.
Note that, for a 2-state Markov chain of any order
pw;1ðtÞ þ pw;0ðtÞ ¼ 1. In the special case of time homoge-
neous Markov chain, pw;jðtÞ ¼ pw;j; for t ¼ t1; . . . ; tN, i.e.
the transition probabilities are independent of time.

Let nw;jðtÞ denote the number of years during which day t
is in state j and is preceded by the word w (i.e.
skðXt�1Þ ¼ w;w 2 Sk and Xt ¼ j). Then the probabilities
pw;jðtÞ are estimated by the observed proportions

p̂w;jðtÞ ¼
nw;jðtÞ
nw;þðtÞ

; w 2 Sk; j 2 S; t ¼ t1; . . . ; tN;

where + indicates summation over the subscript. Note also
that day 60 (February 29th) has data only in leap years so
day 59 precedes day 61 in non-leap years. Fig. 4 (left) shows
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Figure 4 Lund, Sweden (data from 1961 to 2004). (Left): observed
month (‘‘+’’), and per season (solid lines).
the unconditional probability of precipitation, pooled over 5
days for clarity, plotted against t for the data from the sta-
tion in Lund.

In the context of environmental processes, non-stationa-
rity is often apparent, as in this case, because of seasonal
effects or different patterns in different months. A usual
practice is to specify different subsets of the year as sea-
sons, which results to different models for each season,
although the determination of an appropriate segregation
into seasons is itself an issue.

Fitting models to the occurrence of precipitation

There is an inter-annual variation in the annual number of
wet days, as can be seen in Fig. 2. Moreover, there is also
seasonal variation in the mean monthly number of wet days,
see Fig. 4 (Right) for data from Lund, although this is not as
prominent as in other regions of the world. It is possible that
the optimum order of the chain describing the wet/dry se-
quence varies within the year and from one year to another.
It is therefore important to properly identify the period of
record that can be assumed as time homogeneous.

Moreover, the problem of finding an appropriate model
for the occurrence of precipitation process, Xt, is equiva-
lent to the problem of finding the order of a multiple step
Markov chain. The Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC) and the Generalized
Maximum Fluctuation Criterion (GMFC) order estimators, a
short description of which can be found in Section ‘Review
of mathematical order estimators’, have been applied to
the data for each of the stations. Various block lengths were
considered for determining the order of the Markov chain,
k, as suggested in Jimoh and Webster (1996):

• 1 month blocks (i.e. January, February, . . ., December),
• 2 month blocks (January–February, February–March,

. . .,December–January),
• 3 month blocks (January–March,February–April, . . .,
December–February).

The effect of block length on the order of the Markov
chain can be seen in Fig. 5. We can notice that grouping
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the data in blocks of length more than one month, results in
Markov chains of ‘‘smoother’’ order, in the sense that the
order of the chain does not change so fast. It is also interest-
ing to notice that while the order of the Markov chain for
the stations 16–20, varies a lot according to the AIC and
GMFC estimators it seems to be almost constant for the
BIC order estimator. As it has been expected, the BIC order
estimator underestimates the order k of the Markov chain
relatively to both the AIC and GMFC order estimators for
large k and moderate data sets, see Dalevi et al. (2006),
while the values of the GMFC order estimator lie between
the BIC and AIC ones. The results presented in Figs. 5–7 con-
firm that the model order is sensitive to the season (month)
and the length of the season (number of months) consid-
ered, as well as the method used in identifying the optimum
order. Possible dependence on the threshold used for iden-
tifying wet and dry days has not been studied here. For the
rest of this study, we define as seasons the 3 month periods,
December–February, March–May, June–August, Septem-
ber–November. As can be seen in Fig. 3 for the station in
Lund, the rest of the stations provide with similar plots,
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st  01 st  02 st  03 st  04 st  05

st  06 st  07 st  08 st  09 st 10

st 11 st 12 st 13 st 14 st 15

st 16 st 17 st 18 st 19 st 20

5
3
1

5
3
1

5
3
1

5
3
1

Jan Jun DecJan Jun DecJan Jun DecJan Jun DecJan Jun Dec

st  01 st  02 st  03 st  04 st  05

st  06 st  07 st  08 st  09 st 10

st 11 st 12 st 13 st 14 st 15

st 16 st 17 st 18 st 19 st 20

5
3
1

5
3
1

5
3
1

5
3
1

Jan Jun DecJan Jun DecJan Jun DecJan Jun DecJan Jun Dec

Estimated Orders by GM
st  01 st  02 st  03

st  06 st  07 st  08

st 11 st 12 st 13

st 16 st 17 st 18

5
3
1

5
3
1

Jan Jun DecJan Jun DecJan Jun

Figure 5 k-Markov chain orders for block len
the probability of precipitation is close to be constant dur-
ing these periods, which makes the assumption of stationa-
rity seem plaussible. The orders of the Markov chain for
these periods can be found in Fig. 7. For the rest of this
study the order k of the Markov chain is decided according
to the GMFC order estimator.
Distribution of dry spell length

An interesting aspect of the wet/dry behavior, i.e. the pro-
cess Xt, is the distribution of the dry (wet) spells, i.e. the
number of consecutive dry (wet) days, which is an accessi-
ble property of multiple step Markov chains.

For a time homogeneous (stationary) k-Markov chain Xt,
(k P 2), with state-space S let T be the first time the pro-
cess Xt is such that s2ðXtÞ ¼ ð1; 0Þ, i.e.

T ¼ infft P 0 : s2ðYtÞ ¼ ð1; 0Þg:

So T is the time of the start of the first dry period. Let also
for the words u; v 2 Sk
Estimated Orders by Bayesian order estimator
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Figure 6 k-Markov chain orders for block lengths of two months (January–February,February–March, . . .).
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au;v ¼ PðskðXTÞ ¼ vjskðX0Þ ¼ uÞ

denote the probability the process Xt has at time T a k-tail
equal to v given that the k-tail at time 0 is equal to u. The
probabilities au;v are easily obtained for stationary pro-
cesses, see Norris (2005). Note that at t ¼ 0, there may be
the start of a dry period, the start of a wet period, the con-
tinuation of a dry period or the continuation of a wet peri-
od. If DðXtÞ denotes the length of the first dry period that
starts at time t ¼ 0 for the k-Markov chain Xt, then assuming
additionally that the process Xt is time homogeneous, the
distribution of the first dry spell can be computed as

PðDðXtÞ ¼ mÞ ¼
X
fu2Skg

pu

X
fw2Sk :s2ðwÞ¼ð1;0Þg

au;wPðsmðXm�1Þ

¼ 0; Xm ¼ 1jskðX0Þ ¼ wÞ; ð1Þ

where 0 is used to denote sequences of 0’s of appropriate
length.

Now, if v ¼ w01 is a word of length mþ k (0 here is of
order m� 1) and using the fact the process Xt is a k-Markov
chain, Eq. (1) can be rewritten as
PðDðXtÞ¼mÞ¼
X
fu2Skg

pu

X
fw2Sk :s2ðwÞ¼ð1;0Þg

au;w
Ym
i¼1

PðXi¼ vkþijskðXi�1Þ

¼ skðvkþi�1ÞÞ: ð2Þ

Remark 1. Here we should notice that the distribution of
the first dry spell is different than the distribution of the
subsequent dry spells for Markov chains of order greater
than two. For one or two order Markov chains there is no
need for this distinction. Moreover the equivalent of Eq. (1)
for k = 1 is

PðDðXtÞ ¼ mÞ ¼ pm�1
0;0 p0;1

while for k = 2, Eq. (2) simplifies to

PðDðXtÞ ¼ mÞ ¼
p10;1 for m ¼ 1

p10;0p
m�2
00;0 p00;1 for m P 2;

(

where au;v ¼ 1 for all u,v in Eq. (1).

The distribution of the first dry spell can be also used for
model selection or model validation purposes. For this, we
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Figure 7 k-Markov chain orders for block lengths of three months (January–March,February–April, . . .).
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use the Kolmogorov–Smirnov (KS) test, see Benjamin and
Cornell (1970). The one sample KS test compares the empir-
ical distribution function with the cumulative distribution
function specified by the null hypothesis.

Assuming that PkðxÞ is the true distribution function (of a
Markov chain of order k) the KS test is

D ¼ sup
m2Nþ

jPkðDðXÞ 6 mÞ � F empðmÞj;

where FempðxÞ is the empirical cumulative distribution of
the length of the first dry spell. If the data comes truly from
a k order Markov chain and the transition probabilities are
the correct ones, then by Glivenko–Cantelli theorem, see
Dudewizz and Mishra (1988) the KS test converges to zero al-
most surely (a.s).

To apply the test, the transition probabilities have been
estimated from the data using maximum likelihood for dif-
ferent values of the order k of the Markov chain. To obtain
the empirical distribution of the length of the first dry spell,
we have computed the length of the dry spells (sequence of
zeros) following the first (1,0). (Here note that this is equiv-
alent to computing the length of the first dry spell for Mar-
kov chains of order k = 1 or k = 2. In the case of k = 3,
although the distribution of the first dry spell is not exactly
the same as the distribution of any dry spell, we have still
used all the dry spells available due to shortage of data.)
The procedure has been applied separately to data from
each station and season. If the first observations were zeros,
they were ignored as the continuation of a dry spell. Also if
a dry spell was not over by the end of the season then it was
followed inside the next season.

To determine whether the theoretical model was correct
or not, Monte Carlo simulations were performed. We have
obtained the empirical distribution of the length of the first
dry spell using 500 synthetic wet/dry records of 44 years of
data (each station and season was treated separately), and
the KS test was computed for each one of them, which re-
sulted to the distribution of the KS statistic.

The suggested orders of the Markov chain using the Kol-
mogorov–Smirnov statistic at the 10% tail value are col-
lected in Fig. 8. The resulting orders of the Markov chain
appear to be close to those obtained by the BIC order esti-
mator. In Table 2, we have collected information on how
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Figure 8 Order of Markov chain as suggested by the Kol-
mogorov–Smirnov statistic at 10% tail value for each station
and season.

Table 2 Number of data sets that have passed the
Kolmogorov–Smirnov test at the 10% tail value for different
orders of the Markov chain. S1 stands for December–
February, S2 for March–May, S3 for June–August and S4
for September–November.

Model Season

S1 S2 S3 S4

k = 1 1 0 1 6
k = 2 20 20 20 20
k = 3 20 20 20 20
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Figure 9 Conditional distribution of dry spell given the dry
spell is longer or equal to 3 days for k-Markov chain models of
order k = 1, k = 2 and k = 3 and the data from Lund. Data are
from the winter months December–February.

Table 3 Expected length of long dry spells in days for
season December–February in Lund.

Model l = 1 l = 2 l = 3

k = 1 2.49 3.49 4.49
k = 2 – 3.91 4.91
k = 3 – – 5.11

Observed mean value 2.56 3.97 5.23
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many data sets have passed the Kolmogorov–Smirnov test
at the 10% tail value for the different seasons. Observe that
the KS test suggests that the 1-Markov chain, although
widely used, is an inadequate model for the majority of
the stations in Sweden over the different seasons.

Distribution of long dry spells

Let us now define as long dry spell, a dry spell with length
longer or equal to the order k of the Markov chain. Then
it is easy to show that the distribution of the long dry spell
is actually geometric. Indeed, let a long dry spell that starts
at time i have length m P k and let us also assume that we
know that the length of the dry spell is at least l. Then, for
m P l P k

PðDðXtÞ ¼ mjslðXiþl�1Þ ¼ 0Þ ¼ p0;1p
m�l
0;0 ¼ p0;1ð1� p0;1Þ

m�l;

where as before

p0;1 ¼ PðXnþ1 ¼ 1jskðXnÞ ¼ 0Þ; 8n:

Therefore, the expected length of long dry spells is given
by

EðDðXtÞjslðXiþl�1Þ ¼ 0Þ ¼ lþ
1� p0;1

p0;1

: ð3Þ
Fig. 9 shows the conditional distribution of dry spell given
that it has lasted for more than two days for the first season
and the data from Lund. The estimated order of the Markov
chain for this data set is 2 using both the GMFC and the KS
criterion. A first order Markov chain, the popular model of
choice in this case would obviously underestimate the risk
of a long dry spell. A two order Markov chain seems to be
the best choice for this particular data set.

It is clear from Table 3, that underestimation of the or-
der k of the Markov chain leads to underestimation of the
expected length of the long dry spells, where again a dry
spell is defined as long if it has length larger than or equal
to the order of the Markov chain.

Modeling the amount precipitation process

In this section we model the amounts of daily precipitation.
This is done in two steps. Firstly we model the dependence
structure of the amount precipitation process and secondly
we estimate the marginal distribution.

One of the important features of any climatological data
set, is that they exhibit dependence between nearby sta-
tions or successive days. In this work we are interested in
the latter case and the dependence structure is modelled
using two-dimensional Gaussian copula.

After the copula has been estimated, we remove the
days with precipitation below the cut-off level of 0.1 mm.
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That is, we let Yt be the thinning process resulting from the
amount of precipitation process Wt when we consider only
the wet days, i.e. Yt :¼ WtjXt ¼ 1. Then, the marginal dis-
tribution of the amounts of daily precipitation is modelled
following an approach that combines the fit of the distribu-
tion of excesses over a high threshold with the empirical dis-
tribution of the thinned data below the threshold.
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Figure 10 Plot of the dependence structure with the
marginal distributions transformed to standard normal.

Table 4 Extremal parameters and their 95% confidence intervals

Station r̂ CI for r̂ n̂

Lund 5.91 (4.93,7.03) 0.076
Bolmen 6.44 (5.56,7.41) �0.0002
Hanö 5.29 (3.044,8.737) 0.458
Borås 7.63 (7.01,8.28) �0.011
Varberg 5.48 (4.687,6.378) 0.106
Ungsberg 5.768 (4.622,7.115) 0.245
Säffle 6.62 (5.96,7.329) 0.099
Söderköping 6.259 (4.32,8.884) 0.297
Stockholm 5.597 (4.827,6.453) 0.135
Malung 6.355 (5.676,7.095) 0.08
Vattholma 4.964 (3.521,6.784) 0.334
Myskelasen 6.854 (5.962,7.844) 0.019
Härnösand 7.863 (7.053,8.742) 0.087
Rösta 6.276 (5.453,7.19) 0.032
Piteå 5.937 (4.429,7.822) 0.19
Stensele 7.66 (6.098,9.5) 0.041
Haparanda 5.628 (4.405,7.07) �0.073
Kvikkjokk 5.66 (5.01,6.36) 0.04
Pajala 5.033 (3.705,6.728) 0.356
Karesuando 5.303 (4.117,6.754) 0.12
Copula

Almost every climatological data set exhibit dependence
between successive days. To model the temporal depen-
dence structure of the data we use the two-dimensional
Gaussian copula C given by

Cðu; v; qÞ ¼
Z U�1ðuÞ

�1

Z U�1ðvÞ

�1

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p e
�x2�2qxyþy2

2ð1�q2Þ dxdy ð4Þ

¼UqðU�1ðuÞ;U�1ðvÞÞ;

where U is the cumulative distribution function of the stan-
dard normal distribution and Uq is the joint cumulative dis-
tribution function of two standard normal random variables
with correlation coefficient q.

To estimate the copula, let

A ¼ ft : Yt > 0 and Ytþ1 > 0g;

be the set of all days with non zero precipitation that were
followed by days also with non zero precipitation (greater
than 0.1 mm) and

u ¼ ½Ya1 ;Ya2 ; . . .�; v ¼ ½Ya1þ1;Ya2þ1; . . .�; a1; a2; . . . 2 A

be the vectors consisting of the amounts of precipitation
during the days indicated in the set A and the following days
respectively, both with marginal distribution FðxÞ. Then,
transforming the vectors u and v by taking the empirical
cumulative distribution corrected by the factor n

nþ1, (n is
the number of days with positive precipitation in the data
set) results to vectors U and V, respectively that follow
the discrete uniform distribution in (0,1). If the Gaussian
copula in Eq. (4) describes correctly the dependence struc-
ture of the data, then

ðU�1ðUÞ;U�1ðVÞÞ �N
l1

l2

� �
;

r1 qr1r2

qr1r2 r2

� �� �
:

for each weather station.

CI for n̂ ĥ u (mm) q̂

(�0.041,0.236) 0.935 15 0.1362
(�0.095,0.116) 0.921 15 0.2008
(0.115,1.05) 0.977 25 0.1649

(�0.067,0.053) 0.794 10 0.1982
(0.001,0.236) 0.926 15 0.1206
(0.089,0.445) 0.925 15 0.1843
(0.027,0.183) 0.857 10 0.1809
(0.1,0.649) 0.984 25 0.1678
(0.033,0.259) 0.903 10 0.1523
(0.004,0.17) 0.86 10 0.2280
(0.098,0.667) 0.984 20 0.1709

(�0.072,0.13) 0.849 10 0.2311
(0.011,0.175) 0.832 10 0.2068

(�0.062,0.145) 0.876 10 0.2116
(0.004,0.456) 0.96 20 0.2010

(�0.11,0.236) 0.915 15 0.2249
(�0.196,0.125) 0.984 18 0.1871
(�0.04,0.137) 0.864 10 0.2526
(0.153,0.646) 0.966 18 0.2385

(�0.037,0.34) 0.922 15 0.2206
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Finally the copula parameter q is estimated using Pear-
son’s correlation coefficient. An analytic description of
the method and its application can be found in Lennartsson
and Shu (2005). The dependence between successive days is
demonstrated in Fig. 10 where the transformed data from
Lund are plotted.

For a thorough coverage of bivariate copulas and their
properties see Hutchinson and Lai (1990), Joe (1997), Nel-
sen (2006) and Trivedi and Zimmer (2007) who provide with
a copula tutorial for practitioners. The values of the corre-
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Figure 11 Number of m-clusters with more than one obser-
vation. ‘+’ Denotes the observed and ‘o’ the theoretical
number of m-clusters assuming that the observations are
independent, while ‘*’ denotes the number of m-clusters using
q = 0.1362. Line ‘�’ denotes the 95% confidence interval for the
theoretical number of m-clusters assuming independence,
while ‘-.’ denotes the 95% confidence interval for the theoret-
ical number of m-clusters assuming q̂ ¼ 0:1362.
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Figure 12 Mean residual life plot of amount precipitation
process from Lund, dotted lines give the 95% confidence
interval.
lation coefficient q, estimated for each station are col-
lected in Table 4. Notice that all the estimates of the
correlation coefficient q are statistically significant, which
makes the assumption of independence between the data
points to seem unreasonable.

Marginal distribution

Finally, to model the amount precipitation process we pro-
pose an approach that combines the fit of the distribution of
excesses over a high threshold with the empirical distribu-
tion of the original data below the threshold. We commence
our analysis by introducing some notation followed by some
introductory remarks. Let X1; X2; . . . be a sequence of inde-
pendent and identically distributed random variables having
marginal distribution FðxÞ. Let us also denote by

FuðxÞ ¼ PðX 6 xjX > uÞ;

for x > u, the conditional distribution of X given that it ex-
ceeds level u and assume that FuðxÞ can be modelled by
means of a generalized Pareto distribution, that is

FuðxÞ ¼ 1� 1þ n
x � u

r

� �� ��1
n

; ð5Þ

for some l; r > 0 and n over the set
fx : x > u and 1þ n x�u

r > 0g, and zero otherwise. Let also,
FempðxÞ denote the empirical distribution, i.e.

FempðxÞ ¼
1

n

Xn
i¼1
fXi 6 xg;
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Figure 13 Diagnostic plots for threshold excess model fitted
to daily precipitation data from the station in Lund.

Table 5 Values of the parameter h for different choices of
m-clusters.

m ĥ

0 0.9144
1 0.8836
2 0.8425
3 0.8322



Table 6 Weather indices and their mathematical expressions. The quantiles qð�Þ have been estimated using the observed data.

Index Description Formula

R10mm Heavy precipitation days
P

1fZi>10g
R20mm Very heavy precipitation days

P
1fZi>20g

RX1day Highest 1 day precipitation amount maxiZi

RX5day Highest 5 day precipitation amount maxi
P4

j¼0Ziþj
CDD Max number of consecutive dry days maxfj : sjðXiÞ ¼ 0g
CWD Max number of consecutive wet days maxfj : w ¼ sjðXiÞ;wk > 0; 8kg
R75p Moderate wet days

P
1fZi>q0:75g

R90p Above moderate wet days
P

1fZi>q0:90g
R95p Very wet days

P
1fZi>q0:95g

R95p Extremely wet days
P

1fZi>q0:99g
R75pTOT Precipitation fraction due to R75p

P
1fZi>q0:75g=

P
Zi

R90pTOT Precipitation fraction due to R90p
P

1fZi>q0:90g=
P

Zi

R95pTOT Precipitation fraction due to R95p
P

1fZi>q0:95g=
P

Zi

R99pTOT Precipitation fraction due to R99p
P

1fZi>q0:99g=
P

Zi

SDII Simple daily intensity index
P

Yi=
P

1fYi>0g
Prec90p 90%-quant. of thinned amount of precipitation F�1Y ð0:9Þ

Modelling precipitation in Sweden using multiple step markov chains and a composite model 53
where {Æ} denotes the indicator function of an event, i.e. the
0–1 random variable which takes value 1 if the condition
between brackets is satisfied and 0 otherwise.
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Figure 14 Plots of R10mm (top left), R20mm (top right), RX1day (b
‘-’ and empirical distribution ‘.-’.
Finally, define the function

FCðx; uÞ ¼ Fempðx ^ uÞ þ ð1� FempðuÞÞFuðxÞ;
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which, as can be easily checked, is a probability distribution
function that will be used to model the amount precipita-
tion process. Thus what needs to be addressed is the choice
of the level u above which the excesses can be accurately
modelled using a generalized Pareto distribution as well as
methods for the estimation of the distribution parameters.

Choice of threshold level
Selection of a threshold level u, above which the general-
ized Pareto distribution assumption is appropriate is a diffi-
cult task in practice see for example, McNeil (1996), Davison
and Smith (1990) and Rootzen and Tajvidi (1997). Frigessi
et al. (2002), suggest a dynamic mixture model for the esti-
mation of the tail distribution without having to specify a
threshold in advance. Once the threshold u is fixed, the
model parameters n and r are estimated using maximum
likelihood, although there exists a number of other alterna-
tive methods, see for instance Resnick (1997) and Crovella
and Taqqu (1999) and references therein.

Extreme value analysis for dependent sequences
The generalized Pareto distribution is asymptotically a good
model for the marginal distribution of high excesses of inde-
pendent and identically distributed random variables, see
Coles (2001) and Leadbetter et al. (1983). Unfortunately,
this is a property that is almost unreasonable for most of
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Figure 15 Plot of maximum number of consecutive dry days (
the climatological data sets since dependence in successive
days is to be expected. A way of dealing with the depen-
dence between the excesses is either to choose the level u
high enough so that enough time has past between succes-
sive excesses to make them independent or to use decluster-
ing, which is probably the most widely adopted method for
dealing with dependent exceedances; it corresponds to fil-
tering the dependent observations to obtain a set of thresh-
old excesses that are approximately independent, see Coles
(2001). A simple way of determiningm-clusters of extremes,
after specifying a threshold u, is to define consecutive ex-
cesses of u to belong to the same m-cluster as long as they
are separated by less than m + 1 time days. It should be
noted that the separation of extreme events into clusters
is likely to be sensitive to the choice of u, although we do
not study this effect in this work. The effect of declustering
to the generalized Pareto distribution in Eq. ( 5) is the
replacement of the parameters r and n by rh�1 and n, where
h is the so-called extremal index and is loosely defined as

h ¼ ðlimiting mean cluster sizeÞ�1:
Method application

In this subsection we apply the method described in Section
‘Marginal distribution’ to model the thinning of the amount
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of precipitation process, i.e. Yt. To demonstrate the meth-
od we use data from the station in Lund. The rest of the sta-
tions give similar results.

As we have already seen, the data exhibit temporal
dependence. The correlation coefficient q, using the Gauss-
ian copula for the data from Lund was estimated to be
0.1362. The dependence in the data can also be seen in
Fig. 11, where the expected number of m-clusters (with
more than one observation) for different values of m and
u = 15 mm are plotted. The expected number of these m-
clusters, assuming the observations are independent is de-
noted by ‘o’ and are consistently less than the observed
number of m-clusters that is denoted by ‘+’. The expected
number of m-clusters computed assuming the observations
are actually correlated (q = 0.1362) is denoted by ‘*’ and
provides with an obvious improvement to the assumption
of independence. We also provide with 95% exact confi-
dence intervals for both cases. The observed values fall in-
side the confidence interval constructed assuming
correlated data.

After the cluster size has been decided, in the case of the
station in Lund m = 0, we turn to the problem of estimating
the parameters n, r and h for the generalized Pareto model.
The choice of the specific threshold (u = 15 mm) was based
on mean residual life plot. It is expected, see Coles (2001)
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Figure 16 Plot of the probability of number of moderate wet days
(bottom left) and extremely wet days (bottom right).
that for the threshold u for which the generalized Pareto
model provides a good approximation for the excesses
above that level, the mean residual life plot, i.e. the locus
of the points

u;
1

nu

Xnu
i¼1
ðYtðiÞ � uÞ

 !
: u < Ymax

t

( )
;

where Ytð1Þ; . . . ;YtðnuÞ are the nu observations that exceed u
and Ymax

t is the largest observation of the process Yt, should
be approximately linear in u. Fig. 12 shows the mean resid-
ual life plot with approximate 95% confidence interval for
the daily precipitation in Lund. The graph appears to curve
from u = 0 mm until u = 15 mm and is approximately linear
after that threshold. It is tempting to conclude that there
is no stability until u = 28 mm after which there is approxi-
mate linearity which suggests u = 28 mm. However, such
threshold gives very few excesses for any meaningful infer-
ence (33 observations out of 16,000). So we decided to work
initially with the threshold set at u = 15 mm.

Finally, the different diagnostic plots for the fit of the gen-
eralized Pareto distribution are collected in Fig. 13. The data
from the rest of the stations have produced similar plots none
of which gave any reason for concern about the quality of the
fitted models. The parameters of the generalized Pareto
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Figure 17 Percentage of precipitation during the moderately wet days (top left), the above moderate wet days (top right), the
very wet days (bottom left) and the extremely wet days (bottom right).
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model for the data from all the stations together with 95%
confidence intervals are collected in Table 4. For three differ-
ent stations (i.e. Bolmen, Borås and Hapamanda), the esti-
mates of the shape parameter, n, are negative.
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Table 5 shows h for different values of m-clusters and
threshold u = 15 mm for the data from Lund.

Evaluation

To verify the validity of the model, we have obtained distri-
bution functions of the different precipitation indices as
stipulated by the Expert Team and its predecessor, the
CCl/CLIVAR Working Group (WG) on Climate Change Detec-
tion, see Peterson et al. (2001) and Karl et al. (1999). Six-
teen of those indices are of relevance to this work, two
regarding only the occurrence of precipitation process
(CDD and CWD), another two regarding only the amount pre-
cipitation process (SDII and Prec90p) and the remaining
twelve concerning both processes, see Table 6.

Using the chain dependent model, we have obtained the
distribution of each index based on 100,000 simulations. This
has been compared to the empirical distribution (‘.-’ line in
Figs. 14–18). The agreement between the two distributions
is more than satisfactory. Moreover, the empirical distribu-
tion falls always inside the 90% exact confidence intervals.
The results have been presented for the weather station in
Lund. The rest of the stations give similar results.

As we can see, Fig. 14 (top left), approximately during
two years we expect to have about 17 days with precipita-
tion more than 10 mm and, Fig. 14 (top right), about 3 days
with precipitation more than 20 mm. But then, see Fig. 14
(bottom left), the precipitation during each one of these
three days will be quite a lot more than 20 mm. Fig. 14 (bot-
tom right) tell us that the probability of having 5 consecu-
tive days of really heavy precipitation in Lund is quite high.

As we notice in Fig. 15 (left), once every two years we
should expect to have a dry spell with length more than
two weeks, and a wet spell of approximately 12 days.

In Fig. 16 (top left), we see that every two years in Lund,
we expect to have almost fifty moderately wet days (top
right), almost 18 above moderately wet days (top right), al-
most 9 very wet days (bottom left) and almost 2 extremely
wet days (bottom right).

In Fig. 17 (top left), we see that during the fifty moder-
ately wet days that we expect over a period of two years
in Lund we will have about 70% of the total amount of precip-
itation. Similarly, during the 18 above moderate wet days we
expect on average a little more than 40% of the total precip-
itation amount (top right), for the 8 very wet days about 25%
of the total amount (bottom left) and for the 2 extremely
wet days about 10% (bottom right) of the total amount.

In Fig. 18 (left), we see that the average amount of pre-
cipitation per day of precipitation is 3.5 mm and also every
year on average only 1 out of the 10 precipitation days the
downfall exceeds 9.5 mm.
Conclusions

In this paper, we have modelled the temporal variability of
the precipitation in Sweden. The different weather stations
have been assumed as not having any spatial dependence. It
is among our future research plans to try to model also the
spatial variability of the precipitation in the different
weather stations in Sweden. Some interesting conclusions
can be drawn.
We have used a chain dependent model for the precipita-
tion. That consists of a component for the occurrence of
precipitation and a component for the amount of precipita-
tion. For the first component, we have used high order Mar-
kov chains with two states. We have shown that the 1-
Markov chain model that has been used extensively, is an
inadequate model for most of the Swedish stations. For
example, when the distribution of the long dry spell is of
interest, the 1-Markov chains underestimates the length of
the long dry spell in some cases up to half a day.

For the amount of precipitation process, we have used a
copula to describe the temporal dependence structure be-
tween successive days, which in reality is a Gaussian process
with transformed marginals. Then, the cumulative distribu-
tion has been modelled in two steps. First using the empir-
ical distribution for the amounts of precipitation that are
less than a given threshold and, then using a generalised
Pareto distribution to model the excesses above the thresh-
old. Such models have the advantage that they provide with
the mathematical platform that allows computation of such
quantities as return periods.

Finally, the distributions of different weather indices
have been computed using Monte Carlo Markov Chain tech-
niques, and been compared to the empirical distributions
obtained from the data. The agreement between the two
distributions has been really good, which supports the
choice of the models.
Appendix. Review of mathematical order
estimators

Let Xt denote a k-Markov chain that is defined on a state
space S and xn1 its realisation. Let also PMLðkÞðxn1Þ be the kth
order maximum likelihood, i.e.

PMLðkÞ x
n
1

	 

¼ max P Xk

1

	 

Pn

i¼kþ1P Xi ¼ xijskðXi�1Þ ¼ skðxi�1Þ
	 


:

Tong (1975) reported that the Akaike Information Crite-
rion (AIC) order estimator, could be used as an objective
technique for determining the optimum order k of the
chain, see also Akaike (1974). The optimum order k is the
order that has the minimum loss function

k̂AIC xn1
	 


¼ argmink � log P MLðkÞ x
n
1

	 

þ jSjk

� �
:

Schwarz (1978) presented an alternative technique the
Bayesian Information Criterion (BIC) order estimator whose
consistency was established under general conditions was
only recently established. The optimum order, k is the order
that minimises the loss function which now is given by

k̂BICðxn1Þ ¼ argmink � log P MLðxn1Þ þ
jSjkðjSj � 1Þ

2
logðnÞ

 !
:

Dalevi et al. (2006) showed using experimental results
that the BIC order estimator tends to underestimate the or-
der as k gets larger for moderate data sizes.

Finally, the Maximal Fluctuation Criterion (MFC) contrary
to the AIC and BIC order estimators, was specifically de-
signed for multiple step Markov chains. Let for any realisa-
tion x 2 Sn of the k-Markov chain, NxðwÞ ¼ jfi 2 ½1; n� :
slðxiÞ ¼ w;w 2 Slgj denote the number of times w occurs
in x. The Peres–Shields Fluctuation function is defined as
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DkðvÞ ¼ max
s2S

NxðvsÞ �
NxðskðvÞsÞ
NxðskðvÞÞ

NxðvÞ
����

����:
When the order of the Markov chain is k or less, this fluc-

tuation is small. Therefore, the Maximal Fluctuation Crite-
rion (MFC) order estimator is defined as

k̂MFCðxn1Þ ¼ min k P 0 : max
k<jvj<log logðnÞ

DkðvÞ < n3=4

� 
:

In practice the function log logð�Þ is substituted by any
function that grows slower than logð�Þ. Dalevi et al. (2006)
suggested the generalized maximum fluctuation criterion
(GMFC) order estimator, which is closely related to the max-
imal fluctuation criterion (MFC) order estimator

k̂GMFCðxn
1Þ ¼ argmaxk

max
k�1<jvj<fðnÞ

Dk�1ðvÞ

max
k<jvj<fðnÞ

DkðvÞ
;

where fðnÞ is any function that satisfies the same conditions
as for the GMF order estimator.
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