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Abstract Interannual variability in meteorological dryness
and wetness in central Finland during the period 1959–2009
was analysed using Standardized Precipitation Index (SPI) on
three timescales (annual, seasonal and monthly). For different
time steps (12, 3 and 1 months) of SPI values (SPI12, SPI3
and SPI1), trends based on the Mann-Kendall non-parametric
test and the most significant relationships with a number of
climate teleconnection patterns based on Spearman correla-
tion coefficient (rho) were determined. Analysis of the SPI
values on different timescales showed a general decreasing
trend in dryness and an increasing trend in wetness; only
August showed an increasing trend in dryness. The longest
wet period observed was 5 years (between 1988 and 1992),
while the longest dry period was 4 years (in the mid-1960s).
Wet conditions were more frequent than dry conditions and
mainly occurred at extreme or moderate level. Typically, the
extremely wet level was more frequent than the extremely dry
level. The dry and wet conditions were negatively correlated
with the East Atlantic/West Russia and Scandinavia
teleconnection patterns and positively correlated with the
North Atlantic Oscillation.

1 Introduction

Extreme weather events can severely influence society and the
environment (Akinremi et al. 1999; Nicholls and Alexander
2007). One of the most important extreme events in terms of

impact, drought, has already presented many challenges to
economic development, social life and ecological habitats
(Gathara et al. 2006; Nicholls and Alexander 2007;
Kundzewicz 2009). Although the impacts of drought events
are more evident at low latitudes worldwide (Alcamo et al.
2007; UNISDR 2009) and in Europe (Lehner et al. 2005:
Bordi et al. 2009), drought is also considered an important
issue in the Baltic Sea region, including Finland (Barnett et al.
2005; Kjellström and Ruosteenoja 2007; Thorsteinsson and
Björnsson 2011; Rimkus et al. 2012). In Finland, the effects of
drought include reduced crop yields, deteriorated water qual-
ity as metals are leached after droughts (Saarinen et al. 2010)
and water supply problems for small communities. Climate
change resulting from increased greenhouse gas emissions to
the atmosphere (e.g. Boer et al. 2000; Mitchell et al. 2001;
Zeng et al. 2004; IPCC 2007a; Zahn 2009) would lead tomore
extreme weather events, such as drought, in the future (e.g.
IPCC 2007b; Bordi and Sutera 2012).

The term “drought” refers to a temporary decline in water
availability, due mainly to changes in hydro-climatological
variables such as precipitation and temperature (Kundzewicz
2009), e.g. rainfall deficiency. Drought is a gradually devel-
oping event, so precise determination of its onset and end is
difficult (Kossida et al. 2009). It can occur in any climate
region of the world, from very dry to very wet, with different
levels of severity. Dracup et al. (1980) and Wilhite and Glantz
(1985) present different definitions of drought. According to
its impact in a particular sector, drought can be classified as
meteorological, hydrological, agricultural or socio-economic
(Gathara et al. 2006). The most common type, meteorological
drought, is defined as a natural water shortage resulting from a
decrease in the amount of precipitation during a prolonged
period, such as a season or a year (Mishra and Singh 2010).

Climatic variability such as precipitation anomalies, which
represent water deficit (drought) and abundance (wetness), is
normally controlled by teleconnection patterns (e.g. the North
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Atlantic Oscillation; NAO), which comprise long-term varia-
tions in the natural occurrence of chaotic behaviour in the
atmospheric circulation (e.g. Moron et al. 1998; Thompson
and Wallace 2000). Teleconnection patterns are often
expressed by numerical indices to determine the power and
influence of the atmospheric circulation over a particular
region during a specific period of the year. Numerous studies
have been carried out to measure correlations between these
teleconnection indices and many elements of climatic vari-
ability (e.g. precipitation and temperature), on both regional
(e.g. Bartolini et al. 2009; Jaagus 2009; Chaouche et al. 2010;
Jhajharia et al. 2012) and global scale (e.g. Dai et al. 1997;
Dayan and Lamb 2005; Dore 2005). For a comprehensive
review, see Glantz et al. (2009). In particular, a number of
research projects have aimed at understanding and establish-
ing relationships between drought and climatic teleconnection
patterns in different regions of the world (e.g. Chang 1997;
Chiew et al. 1998; Bordi and Sutera 2001; Hoerling and
Kumar 2003; Shabbar and Skinner 2004; Özger et al. 2009).
Since many previous studies in Finland have mainly exam-
ined floods, a study on drought and its links to teleconnection
patterns over Finland is well motivated.

This study investigated the interannual variability in dry
and wet events in central Finland during the period 1959–
2009, based on the Standardized Precipitation Index (SPI)
method on monthly, seasonal and annual timescales and their
connections to different climate teleconnection patterns.
Specific objectives were to (1) determine the frequency and
intensity of dry and wet years, seasons and months; (2) iden-
tify historical trends in different SPI classes for the three time
steps; and (3) identify possible relationships between annual,
seasonal and monthly SPI and some well-established
teleconnection indices. The consequences of droughts were
also analysed to assess whether SPI can be used to predict
different environmental conditions caused by changes in the
Finnish climate.

2 Materials and methods

2.1 Study area and data used

Finland is a long country in the north–south direction
(about 1320 km) located in the Fenno-Scandinavian re-
gion of northern Europe (Fig. 1). Climatic conditions
over Finland is mainly influenced by the Baltic Sea,
the Scandinavian mountain range, the Atlantic Ocean,
latitudinal gradient and continental Eurasia (Atlas of
Finland-Climate 1987; Käyhkö 2004). According to
Köppen-Trewartha (K-T) climate classification system,
Finland is characterized by a boreal or temperate climate
with moderate precipitation over all seasons and no dry
summer (Castro et al. 2007; Chen and Chen 2013). For

the period 1971–2000, mean annual temperature in
Finland ranged from −2.0 to 5.0 °C and the variations
in mean annual precipitation were between 450.0 and
700.0 mm (Drebs et al. 2002).

This study used daily precipitation time series collected at
three Finnish Meteorological Institute (FMI) stations: Ähtäri
(62° 32′ N; 24° 13′ E), Jyväskylä (62° 24′ N; 25° 40′ E) and
Vieremä (63° 50′ N; 27° 13′ E) in central Finland (Fig. 1).
These stations were selected because they have continuously
long-term (1959–2009) records of both daily precipitation and
temperature data without any interruption and missing values.
The average data at these three stations were considered
representative of the precipitation status in central Finland
and were used for further analyses. In central Finland, with
its mid-boreal climate, mean annual temperature was about
2.7 °C and mean annual precipitation was 642 mm during the
period 1959–2009. Precipitation in summer (Jun–Aug) in the
same period was 226 mm, and mean temperature was 14.3 °C,
while for winter (Dec–Feb), the corresponding values were
123 mm and −8.4 °C. The precipitation rate was lowest in
spring (Mar–May) and highest in summer (Okkonen and
Kløve 2010). Thermal winter duration (mean temperature
<0 °C) in the period was almost 5 months; 30–40 % of
precipitation fell as snow, and continuous snow cover duration
was typically from November to April (Okkonen and Kløve
2010).

The teleconnection patterns considered in the study
were the NAO, the Arctic Oscillation (AO) and the East
Atlantic/West Russia (EA/WR), West Pacific (WP), East
Pacific/North Pacific (EP/NP), Pacific/North America
(PNA), East Atlantic (EA), Scandinavia (SCA), Tropical/
Northern Hemisphere (TNH), Polar/Eurasian (POL) and
Pacific Transition (PT) patterns. A summary of these
teleconnection patterns is given in Table 1. Based on data
for 1981–2010, the Climate Prediction Center (CPC) at
the National Oceanic and Atmospheric Administration
(NOAA) has calculated standardized monthly values of
the teleconnections since January 1950 (available online
a t : h t tp : / /www.cpc .ncep .noaa .gov/da ta / t e l edoc /
telecontents.shtml) and provides information about them.
In th i s s tudy, the te leconnec t ion da tase t s fo r
climatological seasons (winter: Dec–Feb; spring: Mar–
May; summer: Jun–Aug; and autumn: Sept–Nov) and
calendar-based years (Jan–Dec) were calculated from their
monthly time series for the period 1959–2009.

2.2 Standardized Precipitation Index

The SPI was developed by McKee et al. (1993) to classify,
monitor and assess dry and wet events in any regions
during different time periods. Detailed procedure for cal-
culating SPI values is described in studies by Guttman
(1999), Lloyd-Hughes and Saunders (2002) and Bordi
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and Sutera (2001). In brief, this study used the classical
procedure for calculating the SPI values at different

timescales (McKee et al. 1993). At first, monthly precipi-
tation data was fitted to the gamma probability distribution.

Fig. 1 Study area and meteorological stations on the maps of (a) average annual temperature (°C) and (b) average annual precipitation (mm), 1981–
2010. Compiled based on Pirinen et al. (2012)

Table 1 Summary of the Northern Hemisphere atmospheric circulation considered in this study

Atmospheric circulation pattern Centre/s of circulation Reference

Abbreviation Name

AO Arctic Oscillation A dipole between the polar cap area and the adjacent zonal
ring centred along 45° N

Thompson and Wallace (1998)

NAO North Atlantic Oscillation Stykkisholmur (Iceland) and Ponta Delagada (Azores) Barnston and Livezey (1987)

WP West Pacific Kamchatka (Russia) and a centre between western North
Pacific and south-east Asia

Wallace and Gutzler (1981)

PNA Pacific/North America Hawaii, the intermountain area of North America, the
southern part of the Aleutian Islands (North Pacific
Ocean) and the south-east USA

Barnston and Livezey (1987)

EP/NP East Pacific/North Pacific Alaska-Western Canada, the central north Pacific and the
east of North America

Barnston and Livezey (1987)

PT Pacific Transition Intermountain area of the USA, Labrador Sea (North
Atlantic), Gulf of Alaska and the eastern US

CPC (2011)

TNH Tropical/North Hemisphere Hudson Bay (Canada) and Gulf of Alaska CPC (2011)

POL Polar/Eurasia North-east China, Europe and North Pole CPC (2011)

SCA Scandinavia Mongolia, Scandinavia and Western Europe Barnston and Livezey (1987)

EA/WR East Atlantic/West Russia West of Europe, Caspian Sea in winter and Russia, north-
west Europe and Portugal in spring and autumn

Barnston and Livezey (1987)

EA East Atlantic North–south dipoles over the North Atlantic Barnston and Livezey (1987)
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A gamma-distributed variable X is positive and continuous
and based on two parameters has a probability distribution
function (PDF) as follows:

g xð Þ ¼ 1

sa Γ að Þ xa−1e
x
s ; for x ≥0 and a; s > 0; ð1Þ

where a and s are the shape and scale parameters, respectively,
and Γ(a) is the mathematical gamma function. Then, an equal
probability transformation from a gamma to a standard normal
distribution is used. Thus, the SPI values are calculated as
following:

SPI ¼ xi−xi
σ

ð2Þ

In order to identify dryness or wetness in an area, McKee
et al. (1993) proposes different SPI classes based on ranges of
their values (Table 2). Positive values of SPI indicate higher
than mean precipitation amount, while negative values indi-
cate lower than mean amounts. Drought event is referred to
SPI value less than −1.0, and wetness is associated with SPI
value greater than 1.0. The magnitude and recurrence of SPI
values greater (less) than 1.0 (−1.0) indicate the intensity and
frequency of wetness (drought), respectively. Onset of
drought is determined when the SPI value falls below −1.0,
while its end is decided when the SPI value becomes positive.
Lloyd-Hughes and Saunders (2002) concluded that all three
types of drought (meteorological, hydrological and agricultur-
al) could be identified in all climate regimes by using different
SPI time steps.

In the present study, SPI values for 1-, 3- and 12-month
intervals (SPI1, SPI3 and SPI12, respectively) were calculat-
ed. Subsequently, the SPI1 for each month (e.g. January:
SPI1Jan) and the SPI3 for each climatological season (e.g.
winter as Dec–Feb: SPI3Win) were analysed. For SPI1 values,
only 1-month precipitation time series are applied for calcu-
lation. SPI3 is computed from 3-month precipitation datasets,
giving an estimation of seasonal precipitation. It describes
moisture conditions in the spring and summer seasons and is

typically used to detect agrometeorological droughts. SPI12
covers the month of December for which the value is calcu-
lated and the precipitation in previous 11 months. SPI12 can
be used to distinguish meteorological and hydrological
drought, as well as long-term dry and wet periods.

2.3 Trend and correlation analyses

2.3.1 Mann-Kendall non-parametric trend test based on Sen’s
method

The Mann-Kendall non-parametric test (MK test) (Mann
1945; Kendall 1975) was applied to detect statistically signif-
icant (p<0.05) trends in different SPI values (SPI1, SPI3 and
SPI12). The test does not depend on probability distribution in
datasets (Helsel and Hirsch 1992) and is recommended by the
World Meteorological Organization (WMO) to determine his-
torical trends in environmental time series. To improve the
consistency of the MK test, the calculated SPI time series data
were first analysed for the presence of autocorrelation (Yue
et al. 2002; Yue and Wang 2004) using the Durbin-Watson d
test for each month separately. The results showed no statis-
tically significant autocorrelations in any month.

Douglas et al. (2000) provided a detailed description of the
MK trend test. Its null hypothesis determines no trend and
expresses that a data sample of a basic variable (xt, t=1, 2,
3,…, N) is identically distributed and independent. The alter-
native hypothesis states that there is a monotonic trend, not
absolutely linear, in xt. To reject the null hypothesis, the p
value of the test standardized statistic (Zs) must be less than the
selected significance level (α). The p value is calculated as the
following:

p ¼ 2: 1−φ Zsð Þ½ � ð3Þ

where φ() is the cumulative distribution function (CDF) of a
standard normal variant. The significance level α=0.05 was
used by the present study. In order to calculate the magnitude
of detected significant trends, the Sen method (Sen 1968) was
applied. The 95 % confidence intervals for estimated trends
were computed to acknowledge uncertainties (Helsel and
Hirsch 1992; Drápela and Drápelova 2011).

2.3.2 Spearman correlation coefficient (rho)

The Spearman coefficient (rho) was used to measure correla-
tions between different SPI values and teleconnection indices.
The rho was preferred to the Pearson correlation (r), because it
assumes no special distribution function for variables. In
addition, rho is a robust measure for datasets with small
sample size (Helsel and Hirsch 1992). For a sample with size
n, the n raw scores (Xi and Yi) are converted to ranks (xi and yi),

Table 2 SPI classes and corresponding ranges of their value over central
Finland. Based on McKee et al. (1993)

Class SPI value Probability (%)

Extremely wet (W3) SPI≥2.0 2.3

Very wet (W2) 2.0>SPI≥1.5 4.4

Moderately wet (W1) 1.5>SPI≥1.0 9.2

Near normal (N0) 1.0>SPI>−1.0 68.2

Moderately dry (D1) −1.0≥SPI>−1.5 9.2

Severely dry (D2) −1.5≥SPI>−2.0 4.4

Extremely dry (D3) SPI≤−2 2.3

M. Irannezhad et al.



and the Spearman rank correlation (rho) is computed as fol-
lows (Helsel and Hirsch 1992):

rho ¼ 1−
6
X

d2i
n n2−1ð Þ ð4Þ

where di is difference between the ranks (xi−yi).

3 Results

3.1 Annual interval

The SPI values on a 12-month (annual) timescale during the
period 1959–2009 showed that the longest dry period was
4 years between 1963 and 1966, while the longest wet period
was 5 years between 1988 and 1992 (Fig. 2a). The driest year
during the period 1959–2009 was 1978, while the wettest year
was 2008 (Fig. 2a). The frequency of dry and wet events based
on different SPI classes (Table 2) for 12-month time steps
(SPI12) is shown in Fig. 2b. During 1959–2009, central
Finland experienced 12 dry years at moderate to extreme level

(Fig. 2b) and 16 years with wet conditions (from moderate to
extreme level). Extremely dry levels were observed in 1963,
1976 and 1978 (3 years). Otherwise, 5 years (1974, 1981,
1983, 1988 and 2008) were extremely wet (Fig. 2a, b). Trend
analysis showed that the annual (12 month) SPI value in-
creased by 0.032±0.029/year in central Finland during
1959–2009 (Fig. 2c). The EA/WR pattern was the most
influential teleconnection for the interannual variability in
12-month SPI values (rho=−0.50, p<0.05) (Fig. 2c). As
shown in Table 3, the SPI12 values in central Finland were
also fairly strongly affected by the SCA pattern (rho=−0.46,
p<0.05).

3.2 Seasonal interval

SPI values on 3-month time steps (SPI3) show a slight in-
creasing trend (0.0045±0.0032 per season, p<0.05) in central
Finland during the period 1959–2009 (Fig. 3a). The wettest
season was summer 1981 (SPI3=3.35), and the driest was
summer 2006 (SPI3=−3.66). The SCA pattern was the most
influential teleconnection for the interannual variability of
SPI3 values (rho=−0.36, p<0.05) (Fig. 3b). Figure 3c shows
the time series of SPI3 and its trend, as well as the SCA
pattern. Besides, the SCA, EA and EA/WR patterns and the
AO showed significant linkages with the SPI3 variation

Fig. 2 a Time series for SPI12, b frequencies of different SPI12 classes and (c) time series of SPI12 with its trend line (R2=0.09) and the most significant
teleconnection (EA/WR pattern)

Variability in dryness and wetness in central Finland



T
ab

le
3

C
or
re
la
tio

ns
be
tw
ee
n
di
ff
er
en
tS

P
I
va
lu
es

an
d
th
e
te
le
co
nn
ec
tio

n
in
di
ce
s.
C
or
re
la
tio

ns
at
5
%

si
gn
if
ic
an
ce

le
ve
la
re

gi
ve
n
as

bo
ld
.S

ee
te
xt

fo
r
ex
pr
es
si
on

of
ab
br
ev
ia
tio

ns

T
im

es
ca
le

S
P
I
tim

e
se
ri
es

V
al
ue

N
A
O

E
A

W
P

E
P-
N
P

PN
A

E
A
/W

R
S
C
A

T
N
H

P
O
L

P
T

A
O

A
nn
ua
l

SP
I1
2

rh
o

0.
15

0.
26

−0
.1
6

—
0.
16

−0
.5
0

−0
.4
6

—
−0

.1
2

—
0.
19

p
0.
30

0.
06

0.
25

—
0.
27

0.
00

0.
00

—
0.
38

—
0.
17

Se
as
on
al

SP
I3

rh
o

0.
11

0.
22

−0
.0
1

−0
.0
9

−0
.0
1

−0
.2
5

−0
.3
6

0.
06

−0
.1
3

—
0.
26

p
0.
11

0.
00

0.
91

0.
28

0.
86

0.
00

0.
00

0.
68

0.
06

—
0.
00

SP
I3
W
in

rh
o

0.
58

0.
19

0.
13

—
−0

.0
3

0.
09

−0
.4
3

0.
06

−0
.3
3

—
0.
51

p
0.
00

0.
19

0.
35

—
0.
84

0.
53

0.
00

0.
68

0.
02

—
0.
00

SP
I3
Sp

r
rh
o

−0
.0
3

0.
25

−0
.0
6

−0
.1
1

−0
.1
9

−0
.2
6

−0
.4
5

—
0.
09

—
0.
33

p
0.
85

0.
08

0.
68

0.
45

0.
19

0.
07

0.
00

—
0.
55

—
0.
02

SP
I3
Su

m
rh
o

−0
.1
1

0.
26

−0
.0
6

−0
.1
0

0.
00

−0
.5
1

−0
.2
2

—
−0

.2
4

—
0.
04

p
0.
46

0.
07

0.
66

0.
49

0.
99

0.
00

0.
12

—
0.
08

—
0.
77

SP
I3
A
ut

rh
o

−0
.0
5

0.
25

−0
.0
6

−0
.0
5

0.
11

−0
.3
1

−0
.3
4

—
0.
03

—
0.
10

p
0.
74

0.
08

0.
70

0.
73

0.
45

0.
03

0.
02

—
0.
81

—
0.
47

M
on
th
ly

SP
I1

rh
o

0.
09

0.
09

0.
04

0.
00

−0
.0
7

−0
.2
2

−0
.3
2

0.
09

−0
.1
2

0.
08

0.
20

p
0.
03

0.
02

0.
38

0.
97

0.
09

0.
00

0.
00

0.
27

0.
00

0.
43

0.
00

SP
I1
Ja
n

rh
o

0.
51

0.
26

0.
09

−0
.0
3

−0
.0
2

−0
.0
9

−0
.4
2

0.
10

−0
.1
8

0.
44

p
0.
00

0.
06

0.
54

0.
83

0.
89

0.
52

0.
00

0.
47

0.
19

0.
00

SP
I1
Fe
b

rh
o

0.
34

0.
19

0.
30

−0
.3
3

−0
.0
9

−0
.1
6

−0
.5
2

0.
01

−0
.2
0

0.
37

p
0.
02

0.
18

0.
03

0.
02

0.
54

0.
25

0.
00

0.
93

0.
15

0.
01

SP
I1
M
ar

rh
o

0.
41

−0
.1
1

0.
09

0.
12

0.
13

−0
.3
6

−0
.3
5

−0
.0
4

0.
36

p
0.
00

0.
44

0.
54

0.
42

0.
37

0.
01

0.
01

0.
81

0.
01

SP
I1
A
pr

rh
o

−0
.1
0

0.
11

−0
.1
0

−0
.0
9

−0
.2
6

−0
.4
2

−0
.4
4

0.
18

0.
22

p
0.
48

0.
44

0.
51

0.
55

0.
06

0.
00

0.
00

0.
20

0.
12

SP
I1
M
ay

rh
o

−0
.1
5

0.
20

−0
.1
2

0.
06

−0
.3
7

−0
.2
7

−0
.3
1

−0
.1
4

−0
.0
3

p
0.
28

0.
15

0.
40

0.
67

0.
01

0.
05

0.
03

0.
33

0.
86

SP
I1
Ju
n

rh
o

−0
.2
2

0.
04

0.
07

0.
00

−0
.2
9

−0
.3
9

−0
.5
2

−0
.2
7

0.
02

p
0.
13

0.
81

0.
61

0.
98

0.
04

0.
01

0.
00

0.
05

0.
91

SP
I1
Ju
l

rh
o

−0
.2
5

0.
12

0.
05

−0
.0
9

0.
18

−0
.4
1

−0
.0
6

−0
.3
9

−0
.0
3

p
0.
08

0.
41

0.
72

0.
54

0.
21

0.
00

0.
70

0.
00

0.
83

SP
I1
A
ug

rh
o

−0
.0
1

0.
05

−0
.0
2

0.
22

−0
.1
0

0.
07

−0
.3
7

−0
.2
6

0.
09

0.
00

p
0.
95

0.
74

0.
89

0.
12

0.
48

0.
63

0.
01

0.
07

0.
55

0.
98

SP
I1
Se
p

rh
o

−0
.0
5

−0
.0
8

0.
16

0.
16

−0
.1
0

0.
04

−0
.4
6

−0
.0
5

0.
07

0.
10

p
0.
75

0.
57

0.
28

0.
27

0.
48

0.
78

0.
00

0.
72

0.
61

0.
51

SP
I1
O
ct

rh
o

−0
.0
4

0.
10

−0
.0
3

−0
.2
1

0.
15

−0
.2
8

−0
.3
6

−0
.1
0

0.
11

p
0.
80

0.
47

0.
82

0.
14

0.
30

0.
05

0.
01

0.
50

0.
45

SP
I1
N
ov

rh
o

−0
.1
3

0.
36

−0
.1
0

0.
29

0.
05

−0
.3
9

0.
04

0.
13

0.
08

M. Irannezhad et al.



(Table 3). Figure 4a shows the frequency of SPI3 values for
different SPI classes (Table 2). About 20 % of SPI3 values (41
seasons) show dry conditions (from moderately to extremely
dry), while 65 seasons (32 %) were wet (Fig. 4a).
Furthermore, extremely wet seasons (21) were more frequent
than extremely dry seasons (12) (Fig. 4a).

The SPI3 value for winter seasons increased by 0.0316±
0.0393/year (p<0.05), while for other seasons, no significant
trends were detected (Fig. 3a). The wettest winter was ob-
served in 1990 (SPI3Win=2.96); the wettest spring in 1988
(SPI3Spr=2.36); the wettest summer in 1981 (SPI3Sum=
3.35); and the wettest autumn in 1986 (SPI3Aut=3.05).
Otherwise, the driest winter was found in 1978 (SPI3Win=
−3.49); the driest spring in 1981 (SPi3Spr=−2.25); the driest
summer in 2006 (SPI3Sum=−3.66); and the driest autumn in
2002 (SPI3Aut=−3.18). Among 51 values of SPI3 for winter
seasons, 13 dry and 18 wet winters were observed (Fig. 4b).
According to the winter SPI3 values (SPI3Win), three winters
were extremely dry, while six winters were extremely wet
(Fig. 4b). For spring, the SPI3Spr values showed 9 dry and
18 wet seasons, in which 2 and 3 springs were at extremely
dry and wet levels, respectively (Fig. 4b). In general, 10 dry
and 13 wet summers and 9 dry and 16 wet autumns were
found (Fig. 4b). The number of extremely wet summers and
autumns ranged between 5 and 7 and the number of extremely
dry summers and autumns between 3 and 4 (Fig. 4b).

At the 5 % significance level, the SPI3 for winter
(SPI3Win) shows the strongest relationships with the NAO
(rho=0.58). For both spring and autumn, the strongest rela-
tionship was with the SCA pattern (rho=−0.45 and −0.34,
respectively), while for summer, it was with the EA/WR
pattern (rho=−0.51) (Fig. 3b). In addition to the NAO, the
SCA (rho=−0.43), POL (rho=−0.33) and AO (rho=0.51)
showed statistically significant relationships with SPI3 for
winter (SPI3Win) (Table 3). This is not surprising, as these
patterns are closely linked with each other (e.g. Chen et al.
2013). The AO and the EA/WR also seemed to have some
influence on SPI3 for spring (rho=0.33) and autumn (rho=
−0.31) (Table 3). Figure 3d shows the time series of SPI3 for
winters and its trend and the NAO index, which was the most
influential teleconnection for this parameter.

3.3 Monthly interval

The time series of monthly SPIs (SPI1) showed a slight
increasing trend of 0.0008±0.0007/month (p<0.05)
(Fig. 5a). The wettest month was June 1981 (SPI1=3.71),
and the driest was November 1993 (SPI=−3.67). The SPI1
values in central Finland show their strongest correlation with
the SCA pattern (rho=−0.32, p<0.05) (Fig. 5a, c). They were
also associated with some other teleconnections, such as
NAO, AO, EA, EA/WR, SCA and POL (Table 3). The fre-
quencies of SPI1 values for different SPI classes (Table 2) areT
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Fig. 3 a Significant trends (p<0.05) in SPI3 values and SPI3 for different
seasons, b most significant correlations between SPI3s and
teleconnection patterns, c time series of SPI3 (SPI3) with its trend line

(R2=0.03) and the most significant teleconnection pattern (SCA pattern)
and d time series of SPI3 for winter (SPI3Win) with its trend line (R2=
0.10) and the most significant teleconnection pattern (NAO index)

Fig. 4 Frequencies of different SPI classes for (a) SPI3 values and (b) SPI3 for different seasons
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presented in Fig. 5d. Of the 612 months studied, 133 months
(about 22%)were dry (frommoderately to extremely dry) and
206months (about 34%)were wet (Fig. 5d). The frequency of
wet months increased by 0.0250±0.0167/year (p<0.01, data
not shown), while no clear trend was found for the frequency
of dry months. Moderately wet (W1), with 84 recurrences,
was the most frequent wet month event, and extremely dry
(D3), with 52 recurrences, was the most frequent dry month
event (Fig. 5d).

The monthly SPI values for August (SPI1Aug) decreased
(by 0.0246±0.0427, p<0.05) (Fig. 5b), while no clear trends
were found for the monthly SPI values in other months. The
SCA pattern was the most influential teleconnection for the
monthly SPI values for February (SPI1Feb), April (SPI1Apr),
June (SPI1Jun), August (SPI1Aug), September (SPI1Sep) and
October (SPI1Oct) (Fig. 5c). The time series of SPI1Aug in
central Finland with its trend and the SCA pattern are present-
ed in Fig 5b. The SPI1 values for January (SPI1Jan), March
(SPI1Mar) and December (SPI1 Dec) show the strongest
relationships with the NAO; for July and November with the
EA/WR pattern; and for May with the PNA pattern (Fig. 5c).
Comprehensive data on correlations between monthly SPI
values (SPI1) for each month of the year and different
teleconnection indices are given in Table 3. The frequencies
in different classes of monthly SPI values (SPI1), from

extremely dry to extremely wet, followed a similar trend to
the seasonal SPI values (SPI3) (Fig. 6). Extremely dry levels
(D3) were less frequent for August and September (three
times for each), but more frequent for January, March, May,
October and December (five to six times for each) (Fig. 6).
Otherwise, extremely wet levels (W3) occurred at least three
times for all months and at most nine times in October (Fig. 6).

4 Discussion

4.1 Standardized Precipitation Index

In order to quantify droughts and monitor wet and dry periods,
various indices (e.g. SPI; Palmer Drought Severity Index
(PDSI); Rainfall Anomaly Index (RAI); Crop Moisture
Index (CMI); and Surface Water Supply Index (SWSI)) have
been developed (see also Heim 2002), each with its weak-
nesses and strengths (Mishra and Singh 2010). For character-
izing meteorological drought, experts have agreed that the SPI
should be used by all National Meteorological and
Hydrological Services around the world (WMO 2009;
Hayes et al. 2011). The main advantages of this index are
the following: (1) simplicity of use, as it depends only upon

Fig. 5 a Time series of SPI1 values with its trend line (R2=0.007) and the
most significant teleconnection pattern (SCA pattern), b time series of
SPI1 values for August (SPI1Aug) with its trend (R2=0.08) and the most

significant teleconnection pattern (SCA pattern), c the most significant
correlations between SPI1s and teleconnection patterns and d frequencies
of different SPI1 classes
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precipitation records; (2) ease of calculation in comparison to
other drought indices; (3) flexibility, as it can be used on
different timescales to describe various types of drought (me-
teorological, hydrological and agricultural); and 4) relevance
for spatial and temporal analysis of drought, as it is a stan-
dardized index (Guttman 1998; Lloyd-Hughes and Saunders
2002). However, depending only on precipitation and not
taking into account the effects of other climatological vari-
ables (e.g. temperature), particularly the role of evapotranspi-
ration in the context of temperature warming (Vicente-Serrano
et al. 2010a, 2012), is the most significant weakness of the SPI
approach.

Application of drought indices including evapotranspira-
tion (e.g. Wells et al. 2004; Tsakiris et al. 2007; Vicente-
Serrano et al. 2010a) can be more appropriate under climate
warming than the precipitation-based indices such as the SPI.
Recently, Standardized Precipitation Evapotranspiration
Index (SPEI) has been proposed by Vicente-Serrano et al.
(2010a) as a suitable drought index for monitoring and study-
ing the effects of temperature warming on severity of
droughts. A complete theoretical description of SPEI, details
of computation and comparisons with other common drought
indices were provided by Vicente-Serrano et al. (2010a,
2010b, 2012). The theory behind the SPEI is very similar to
the SPI, but instead of precipitation, it is based on climatic
water balance (CWB) calculated as the difference between
monthly precipitation (P) and the potential evapotranspiration

(PET). To estimate the PET, the original algorithm of SPEI
recommends using the Thornthwaite (Th) equation that only
needs mean daily temperature and latitude of the station
(Thornthwaite 1948). However, Chen et al. (2005) established
that other meteorological factors determining potential evapo-
transpiration can also change under climate change, which
makes the estimates based on the Thornthwaite method ques-
tionable. Thus, SPEI may not always be superior to SPI. As
for SPI calculation, the gamma distribution is usually used to
compute SPEI. SPEI also applies the same classification ap-
proach for dry–wet conditions as SPI.

In Finland, annual precipitation increased by 9.2±5.0 (mm/
decade) during 1911–2011 (Irannezhad et al. 2014), and an-
nual mean temperature increased by 0.09±0.07 (°C/decade)
over the years 1908–2009 (Tietäväinen et al. 2010). Solantie
and Joukola (2001) concluded that the observed changes in
evapotranspiration from the period 1960–1975 to 1976–1990
was about 2 mm in central Finland, where the stations studied
by this work are located. Hence, we assumed that the magni-
tude of temperature warming has not been large enough for
determination of significant changes in the spatiotemporal
patterns of droughts in central Finland, where precipitation
plays the most important role. To corroborate this assumption,
monthly SPI and SPEI values for central Finland were com-
pared based on the linear regression analysis. It proved that the
SPI and SPEI over central Finland during the study period
(1959–2009) were highly correlated (R2=0.90, p<0.01)

Fig. 6 Frequencies of different SPI classes for each of the monthly SPI values
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without a significant difference (Fig. 7 in Appendix A), if they
are calculated at the same accumulation time step (e.g.
1 month). Thus, for this study, using either the SPI or SPEI
would produce similar results and conclusions from drought
analysis at same timescales. Similarly, only small difference in
results from using the SPI and SPEI values have been reported
by many studies, even over mild-latitude areas with obviously
warmer climate (e.g. Paulo et al. 2012; Spinoni et al. 2013; Di
lena et Al. 2014). However, future efforts in order to analyse
drought patterns during the twenty-first century may need to
be based on the SPEI that considers impacts of temperature
warming as well as changes in precipitation. Further, influence
of wind, humidity and radiation on potential evapotranspira-
tion may also need to be included.

4.2 Dryness and wetness variations

4.2.1 SPI as predictor of annual drought and wetness

The SPI12 has previously been considered a useful indicator
of both meteorological and hydrological drought (Hayes et al.
1999). The increasing trend in SPI12 found in the present
study represents a decline in drought and an increase in
wetness in central Finland. Similarly, Rimkus et al. (2012)
reported increased SPI values in various time steps (1, 3, 12
and 60 months) over major parts of the Baltic region in the
period 1961–2010. According to their SPI12 values, there was
a slight tendency for wetter conditions in central Finland, a
trend which was statistically significant (p<0.05) over Ähtäri.
Zolina et al. (2012) also concluded that the duration of wet
spells had significantly increased in northern Europe, includ-
ing Finland, during the period 1950–2009. Based on precip-
itation records, Irannezhad et al. (2014) determined an in-
crease in annual (12 month) precipitation on national level
of Finland from 1911 to 2011, which also indicates decreased
dryness. The observed increasing trend in SPI is in agreement
with observations of river base flow for 1912–2004, with
Korhonen and Kuusisto (2010) reporting increases in mini-
mum flow for about 50 % of unregulated rivers in Finland.
This shows that SPI is well suited to show trends in drought
for Finland.

According to the results from the present study, the longest
drought period (4 years) in central Finland during the study
period occurred in the mid-1960s. This is in agreement with
Rimkus et al. (2012), who reported dry years during the
1960s, and Irannezhad et al. (2014), who described the period
1960–1972 as dry. Furthermore, 1978 was a dry year in
Finland (Tuomenvirta and Heino 1996), and 1976 was dry
in major parts of northern Europe (Rimkus et al. 2012). Wetter
conditions have generally been observed after 1980. The
wettest year in the present study was 2008, which is in
agreement with results reported by Irannezhad et al. (2014).
Wet events were more frequent than dry events in central

Finland. The longest wet period (5 years) occurred in 1988–
1992 in central Finland. After this relatively wet period,
northern Europe (including Sweden, Norway and Finland)
was faced with a drought in 2002–2003 (Korhonen and
Kuusisto 2010; Tallaksen et al. 2011; Irannezhad et al.
2014), as also found in the present study based on SPI12
values (Fig. 2a). This drought resulted in economic losses
and environmental impacts in Finland, mainly due to a decline
in the production of hydropower and in water supply to
households and buildings (Silander and Järvinen 2004). Low
groundwater level and poor water quality in lakes and rivers
were also reported as main impacts of drought in Finland.
Low groundwater levels in 1968–1969, 1996–1997 and
2006–2007 (Saarinen et al. 2013) were associated with the
dry conditions, as also seen in the present study (Fig. 2a). Low
lake levels and low seepage resulted in low oxygen content in
winter and fish kills in more than 200 lakes in Finland during
2002–2003 (Olin and Ruuhijärvi 2005). In rivers running
through acid sulphate soils on the west coast of Finland,
acidity was released after drought, resulting in low pH and
high toxic metal concentrations and causing massive fish kills
in autumn 2006 following the extremely dry summer
(Saarinen and Kløve 2012), as also seen by the SPI3 values
in the present study. In future work, these ecological effects of
droughts need to be better described and the SPI method can
act as a useful tool to quantify such effects.

4.2.2 Seasonal variability in SPI

SPI values based on 3-month data (SPI3) increased slightly in
central Finland. Similarly, Rimkus et al. (2012) reported that
the amount of moisture increased over the Baltic region during
1960–2009, which also means a decline in overall dryness.
However, those authors concluded that the probability of
short-term droughts could still remain relatively high in the
future, as no significant increasing trend in SPI3 time series
was noted, despite the decline in overall dryness. Based on
SPI3, central Finland has received more frequent wet seasons
than dry seasons during 1959–2009. The most extremely dry
and wet seasons were in summers of 2006 and 1981, respec-
tively. As the SPI3 is usually used to indicate agricultural
droughts (McKee et al. 1993), the results could indicate po-
tential impacts on agriculture in central Finland. The 2006
drought and 1981 wetness are evident as low yields of crops,
which in Finland are sensitive to both drought and wetness
(Lehtonen and Kujala 2007; MTT 2007; Peltonen-Sainio et al.
2009).

The findings of this study confirmed increases in
SPI3 for winter (SPI3Win). This agrees with findings
by Irannezhad et al. (2014), who showed increasing
trends in winter precipitation in Finland during 1911–
2011. Some other studies have also reported increases in
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precipitation for winter (e.g. Tammelin et al. 2002; Uvo
2003; BACC 2008).

The results indicated that seasonal droughts were less fre-
quent than wetness over central Finland during the period
1959–2009. The seasonal dryness determined for winters
(SPI3Win) was mostly at the severely dry level (D2), that in
springs (SPI3Spr) at moderately dry level (D1), that in sum-
mers (SPI3Sum) at moderately dry level (D1) and that in
autumns (SPI3Aut) at extremely and severely dry level (D3
and D2, respectively). Otherwise, the frequency of moderately
wet (W1) springs, extremely wet (W3) summers and very wet
(W2) autumns was higher than that of other SPI classes of
wetness. However, very wet (W2) summers were rarer than
either moderately (W1) or extremely (W3) wet summers. For
winter SPI (SPI3Win), in contrast, wetness was distributed
evenly among different classes of SPI, from moderately (W1)
to extremely (W3) wet.

4.2.3 Monthly interval

The slight increases in monthly SPI values (SPI1) found by
the present study indicate that central Finland experienced
more wetness than dryness in the study period. Similarly,
Rimkus et al. (2012) determined that wetness over the Baltic
Sea region has intensified during 1960–2009. A correspond-
ing trend was observed in Iceland (Sienz et al. 2007).
Irannezhad et al. (2014) concluded that there were no clear
trends in precipitation for August, which was also the wettest
month in Finland, while the present study found a decreasing
trend. In central Finland, the frequency of wet months in-
creased, while no significant trend was found in the frequency
of dry months. Extreme level dryness (D3) occurred less
frequently than extreme level wetness (W3) in central
Finland. The most frequent recurrence (nine events) of ex-
tremely wet conditions was observed for October, and the
most frequent recurrence of extremely dry conditions (six
events) for January.

4.3 Impact of teleconnection patterns

Atmospheric circulation has been identified as one of the most
important factors determining surface weather conditions,
including precipitation, over northern Europe (e.g. Busuioc
et al. 2001a; Uvo 2003; Irannezhad et al. 2014).
Teleconnection indices are usually used to capture recurring
and persistent large-scale patterns in atmospheric circulation
anomalies that cover large areas. This study made use of 10
such patterns over the northern hemisphere identified by
Barnston and Livezey (1987) using rotated empirical orthog-
onal function (EOF) analysis. In terms of significant patterns
for the SPI, it was established that the EA/WR and SCA
patterns were negatively associated with the variability of

SPI values in various time steps, while the NAO played a
positive role. Similarly, in studies by Irannezhad et al. (2014)
and Jaagus (2009), annual precipitation over Finland was
negatively associated with the EA/WR and SCA patterns.
These two patterns were also most influential teleconnections
for seasonal SPI values in spring (SPI3Spr), summer
(SPI3Sum) and autumn (SPI3Aut) and for monthly SPI for
February, April, June, August, October and November in
central Finland. Similar relationships have been reported by
Irannezhad et al. (2014) and Jaagus (2009). It is interesting to
note that the EA/WR and SCA patterns are referred to by
Barnston and Livezey (1987) as two Eurasian patterns (types
2 and 1) that show relatively strong action centres over north-
ern Europe. Previous studies for Sweden have also established
the importance of these two patterns, in addition to the well-
known impact of the NAO (e.g. Chen and Hellström 1999;
Busuioc et al. 2001b).

EA/WR is one of prominent teleconnection patterns affect-
ing climate conditions over Eurasia during most time of the
year. It is a zonally oriented pattern describing the meridional
circulation for Finland and usually weakens the effects of
otherwise frequent westerly airflow (Krichak and Alpert
2005). The positive phase of EA/WR pattern corresponds to
the anomalous northerly and north-westerly circulation result-
ed from the above-average (positive anomaly) pressures over
Europe and northern China, while the below-average (nega-
tive anomaly) pressures over the centre of North Atlantic and
the north of the Caspian Sea. Hence, the positive (negative)
phase of the EA/WR pattern generally results in drier (wetter)
conditions than normal over northern Europe (Krichak and
Alpert 2005). The findings by the present study confirmed this
negative relationship between precipitation anomalies (dry-
ness and wetness) and the variations in the EA/WR pattern
over northern Europe.

The primary action centre of the SCA pattern is located
over the Scandinavia and large portions of the Arctic Ocean
over the north of Siberia. It also has two other action centres
located in north-eastern Atlantic (the west of Europe) and over
Mongolia in the west of China. The negative (positive) phase
of SCA pattern represents low (high) pressure system over the
Norwegian Sea, Greenland and Scandinavian region, which
brings wetter (drier) air to Finland (Bueh and Nakamura
2007). This natural sign of SCA pattern was also observed
and confirmed by the current study.

NAO describes the intensity of westerly circulation from
the North Atlantic towards the Atlantic sector of Europe. The
positive phase of NAO is associated with the reinforcement of
westerly circulation and prevails wet and mild maritime air-
flow over northern Europe, including Finland, during the cold
season. Since 1950, most significant strengthening of westerly
circulation intensity has been detected in February. It was also
substantial in March but not in other months, particularly
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during summer (Jaagus 2006). Naturally, the positive phase of
NAO index results in wetter than normal climate (positive
anomalies) over the Scandinavian region, mainly during the
cold months of year. Similarly, the present study found that the
NAO was the most significant teleconnection that positively
influenced variations in winter SPI values (SPI3Win) and
monthly SPI values for January (SPI1Jan), March (SPI1Mar)
and December (SPI1Dec) in central Finland during the study
period (1959–2009). Many other studies have shown similar
positive relationships between the NAO and precipitation over
northern Europe in winter and cold months (e.g. Hurrell and
Van Loon 1997; Wibig 1999; Uvo 2003; Jaagus 2009).

5 Summary and conclusions

This study examined the interannual variability and long-term
trends in meteorological dryness and wetness over central
Finland based on monthly precipitation datasets for the period
1959–2009, using SPI values for annual (SPI12), seasonal
(SPI3) and monthly (SPI1) timescales. Correlations between
dryness and wetness variability and various global
teleconnection patterns were measured using Spearman cor-
relation coefficient (rho) and trends in SPI values based on the
Mann-Kendall non-parametric test. The following conclu-
sions were drawn:

1) Central Finland generally became wetter during 1959–
2009. Increasing trends in SPI values in different
timesteps (1, 3 and 12 months) indicate more wetness

and less dryness (drought). Dryness was intensified only
in August. The longest drought period was 4 years (in the
mid-1960s), while the longest wet period was 5 years
(1988–1992).

2) All SPI values with different time steps show that wetness
was more frequent than dryness over central Finland
during 1959–2009. The frequencies of different classes
of SPI values on three timescales (annual, seasonal and
monthly) display similar distribution patterns. Wet and
dry periods occurred mainly at extreme (W3 and D3) or
moderate level (W1 and D1), while very wet (W2) and
severely dry (D2) periods occurred less frequently.
Besides, the frequency of extremely wet (W3) was higher
than that of extremely dry (D3) in all SPI time steps.

3) Meteorological wetness and dryness in central Finland
were closely associated with a number of teleconnection
patterns. In general, the EA/WR and the SCA patterns
negatively influenced variations in precipitation on annu-
al, seasonal (spring, summer and autumn) and monthly
(warm months) timescales. The NAO was the most sig-
nificant teleconnection pattern, positively influencing
precipitation in winter and cold months.
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Appendix A: Linear regression analysis of monthly SPI
and SPEI values in central Finland

Fig. 7 Relationship between
monthly SPI and SPEI values in
central Finland
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