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ABSTRACT

Two approaches of statistical downscaling were applied to indices of temperature extremes based on
percentiles of daily maximum and minimum temperature observations at Beijing station in summer during
1960-2008. One was to downscale daily maximum and minimum temperatures by using EOF analysis
and stepwise linear regression at first, then to calculate the indices of extremes; the other was to directly
downscale the percentile-based indices by using seasonal large-scale temperature and geo-potential height
records. The cross-validation results showed that the latter approach has a better performance than the
former. Then, the latter approach was applied to 48 meteorological stations in northern China. The cross-
validation results for all 48 stations showed close correlation between the percentile-based indices and the
seasonal large-scale variables. Finally, future scenarios of indices of temperature extremes in northern China
were projected by applying the statistical downscaling to Hadley Centre Coupled Model Version 3 (HadCM3)
simulations under the Representative Concentration Pathways 4.5 (RCP 4.5) scenario of the Fifth Coupled
Model Inter-comparison Project (CMIP5). The results showed that the 90th percentile of daily maximum
temperatures will increase by about 1.5°C, and the 10th of daily minimum temperatures will increase by
about 2°C during the period 2011-35 relative to 1980-99.
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Introduction

to assess the impacts of these changes on human activ-

Extreme weather and climate events have attracted
increasing attention in the last 50 years owing to their
large impact on human life, the environment, economy
and society (IPCC, 2007). There is a common recog-
nition that changes in the frequency and intensity of
extremes events have a higher impact on the environ-
ment and human activities than changes in mean cli-
mate (Katz and Brown, 1992; Yan and Yang, 2000).
The future climate is likely to be significantly different
from that of the present because of global warming ow-
ing to increased greenhouse gas emissions from human
activities. Thus, climate change scenarios are needed
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ities and the environment. This has led to a growing
demand for more reliable and finer spatial resolution
scenarios of extreme climate events (e.g. Chen et al.,
2008).

General Circulation Models (GCMs) are generally
designed to simulate the present climate and project
future climate. However, they are unable to present
local- and regional-scale climate and their changes
because of their coarse spatial resolutions. There-
fore, there is a need to “translate” GCM simulations
into much finer spatial resolution scenarios for climate
change impact studies, known as “downscaling”. Two
major downscaling approaches are often used: dy-
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namic and statistical downscaling. Dynamic downscal-
ing is a method of obtaining regional-scale information
by using a regional climate model (RCM) driven by a
GCM (e.g. Achberger et al., 2003), whereas statisti-
cal downscaling involves the application of statistical
relationships between large- and local-scale climates,
established by observations, to GCM outputs to con-
struct future climate scenarios (Benestad et al., 2008).
Its major advantages over dynamic downscaling are
that it is simple and computationally efficient, and
able to provide station-scale climatic variables from
GCM outputs (Fan et al., 2005; Hanssen-Bauer et al.,
2005; Wilks, 2010). A number of inter-comparison
studies indicate that statistical downscaling methods
and RCM-based methods have comparable skill over
both daily and monthly timescales, at least for present
climate conditions (Hellstrom et al., 2001; Hanssen-
Bauer et al., 2003).

Some studies of statistical downscaling of extreme
climate events have been carried out (Coulibaly, 2004;
Hundecha and Bardossy, 2008; Lee et al., 2011a, b).
However, statistical downscaling of extreme events is
still a relatively new area for climate change study,
especially in China, where studies of statistical down-
scaling have focused mainly on mean climate (Hell-
strom and Chen, 2003; Chen et al., 2006; Wetterhall
et al., 2006; Fan et al., 2007; Zhao and Xu, 2008; Zhu
et al., 2008; Fan, 2009, 2010; Liu et al., 2011).

Extreme climate events can be defined as events
that occur with extraordinarily low frequency during
a certain period of time (rarity), events with high mag-
nitude (intensity) or duration, and events causing size-
able impacts, such as losses to human life and property
(severity). In this study, the 90th and 10th percentiles
were selected as indices of extreme events, i.e. those
events that occurred less than the 10th percentile or
larger than the 90th percentile of probability distribu-
tions of observed daily variables were defined as ex-
treme events, which is a widely applied approach (e.g.
IPCC, 2007). There were two reasons for this choice.
First of all, they are more commonly used in previ-
ous studies for the analysis of extreme climate events
since they are comparable and transferable among dif-
ferent climatic variables in different regions, compared
to a fixed threshold. Secondly, if more extreme indices,
such as the 1st and 99th percentiles of daily variables,
are used, it may be difficult to obtain statistically sta-
ble and reliable results owing to the relatively short
duration of the observations (Jones et al., 1999; Yan
et al., 2002).

A commonly used approach of constructing season-
ally extreme indices is that the daily results of statis-
tical downscaling are used to calculate extreme tem-
perature indices on a seasonal basis. However, this
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approach has some shortcomings that are worth men-
tioning. Firstly, statistical downscaling on a daily
scale often requires daily GCM outputs, which are
not always available [for example, the fifth coupled
model inter-comparison project (CMIP5) websites do
not provide daily-scale Hadley Centre Coupled Model
Version 3 (HadCM3) scenarios]. Secondly, daily sim-
ulations are generally less reliable than those on a
monthly scale. Thirdly, since temperature-related in-
dices on a monthly or seasonal scale generally follow a
normal distribution, a linear regression model can be
directly used for the downscaling, while a more com-
plex method needs to be considered for downscaling
daily values because of the non-normal distribution of
many daily values.

This study attempts to avoid the problems of di-
rectly downscaling daily temperature time series by es-
tablishing statistical downscaling models between the
seasonal means of large-scale climatic predictors and
extreme temperature indices. To prove the usefulness
of this approach, a station in northern China was used
first to compare the performance of the two options
for the downscaling mentioned above. Then, the pro-
posed approach was applied to 48 stations in northern
China to simulate historical and future climate using
a GCM output.

2. Extreme temperature indices and data
used

Four temperature-related indices were selected as
predictants in statistical downscaling procedures in-
volving summer average (Tmaxave) of daily maxi-
mum temperature (Tmax), summer average (Tmi-
nave) of daily minimum temperature (Tmin), the 90th
percentile of summer daily maximum temperature
(Tmax90p), and the 10th percentile of summer daily
minimum temperature (TminlOp). The Tmax and
Tmin data were obtained from homogenized historical
data for China (Li and Yan, 2009). Summer average
values (Tmaxave, Tminave), percentiles (Tmax90p,
TminlOp) and standard deviations of Tmax and Tmin
(Tmaxsd and Tminsd) were calculated by 92 daily val-
ues for each summer during 1960-2008.

Northern China (Hebei, Shanxi, parts of Inner
Mongolia, Beijing, and Tianjin) was selected as the
target region, mainly because a significant warming
and aridification trend has been found there during
the past 50 years. The 48 meteorological stations se-
lected in northern China are shown in Fig. 1.

In general, the choice of predictor variables and
predictor domains (the location and dimensions of the
large-scale predictor fields) is one of the most impor-
tant steps in the development of statistical downscal-
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Fig. 1. Research area and locations of the 48 meteoro-
logical stations (solid dots).

ing models (Benestad, 2001). In statistically down-
scaling daily temperature in Europe, Huth (2002)
reported that the best performance is achieved if one
circulation field and one temperature field are used as
predictors. Based on our previous experiences with
downscaling monthly temperatures in northern China
(Fan et al., 2007, 2011), the geo-potential height field
(H850) and temperature field (T850) at 850 hPa were
selected as predictor variables and the area cover-
ing (30°-50°N, 100°-130°E) was chosen as the pre-
dictor domain. Daily and monthly NCEP-NCAR
(National Centers for Environmental Prediction—
National Center for Atmospheric Research) Reanal-
ysis data with a resolution of 2.5°x2.5° (Kalnay et
al., 1996) for the summers during 19602008 were
used as the observation of large-scale climate data,
which were provided by the NOAA /Earth System Re-
search Laboratory (ESRL)/Physical Sciences Division
(PSD), Boulder, Colorado, USA, from their web site
(http://www.esrl.noaa.gov/psd/data/gridded /data.n-
cep.reanalysis.html).

The GCM model used was the UK Met Office
HadCM3, with a longitude-latitude grid resolution of
3.75°%x2.5° and 19 hybrid vertical levels (Gordon et
al., 2000; Pope et al., 2000).

A number of new emission scenarios called Repre-
sentative Concentration Pathways (RCPs) have been
introduced by the IPCC to drive climate model simu-
lations. These RCPs have replaced the previous emis-
sion scenarios from the Special Report on Emissions
Scenarios (SRES). The four RCPs, including RCP8.5,
RCP6.0, RCP 4.5 and RCP2.6, are defined according
to radiative forcing levels and pathway shapes. Among
them, RCP4.5 is an intermedia-low pathway and a sta-
bilization scenario in which radiative forcing is stabi-
lized at approximately 4.5 W m~2 (approximately 650
ppm COs-equavalent) after 2100 without ever exceed-
ing that value (Moss et al., 2008, 2010). The RCP4.5
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scenario is also a cost-minimizing pathway. It assumes
that all nations of the world undertake emissions miti-
gation simultaneously and effectively (Thomson et al.,
2011). Here, the historical (1960-2005) and RCP4.5
(2006-35) simulations by HadCM3 were adopted to
downscale the indices of temperature extremes, based
on CMIP5 (Taylor et al., 2009) from the website
(http://badc.nerc.ac.uk/browse/badc/cmip5/).

3. Statistical downscaling models

This paper presents two approaches to the statis-
tical downscaling of extreme temperature indices: one
is to downscale daily Tmax and Tmin first, then to
calculate the four indices of summer extreme temper-
ature (DS1); the other is to directly downscale the
four extreme temperature indices by using seasonally
large-scale predictor variables (DS2).

Both downscaling approaches described above in-
volve EOF analysis and stepwise liner regression anal-
ysis (von Storch and Zwiers, 1999). First, predictors
of both H850 and T850 on the monthly or daily scale
from NCEP-NCAR Reanalysis data were standardized
with respect to their means and standard deviation
during 1980-99. Then, these standardized fields were
spatially combined into one new field (H + T'). For
example, H + T at grid n and a given time (¢) can be
described in terms of a vector X (t) = [x1, T2, ..., Ty]
and H850 and T850 can be represented by two vec-
tors, Y and Z, of length m respectively. Thus,
the information on H850 and T850 can be combined
by combining two vectors: X (t) = [Y(¢),Z(¢t)] =
[Y1,Y2, - - - Yms 21, 22, - - - Zm]- The new field (H+T') had
the number of grids being equal to the sum of those for
H850 and T850 without any alteration in time dimen-
sion. Next, H+T was decomposed using EOF analysis
into two parts: EOFs and principal components (PCs).
The EOF's of H+T were used to find the coupled pat-
terns of H850 and T850 and their corresponding PCs
represent their time-varying characteristics (Brether-
ton et al., 1992; Fan, 2010; Fan et al., 2011). Finally
the first ten PCs of H 4+ T and observational data at
each station were fed into stepwise linear regression
to establish an optimum statistical downscaling model
using the Akaike Information Criterion (AIC) (Cham-
bers and Hastie, 1992) in a stepwise algorithm for each
station and each index. For DS1, daily H850 and T850
datasets from the NCEP-NCAR Reanalysis data and
historical daily Tmax and Tmin data at each station
were used, whereas for DS2 summer means of monthly
H850 and T850 datasets and the four extreme temper-
ature indices calculated by daily Tmax and Tmin were
used.

In order to make full use of the limited histori-
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cal observational data, the performances of the two
statistical downscaling approaches were validated us-
ing the cross-validation method. The station at Bei-
jing was taken as an example to compare the model
skill between DS1 and DS2. Cross-validation proce-
dures were as follows. Firstly, the first year (1960)
was taken for prediction, while the years from 1961-
2008 were used to construct the statistical downscal-
ing models by adopting the downscaling processes de-
scribed above. For DS1, daily Tmax and Tmin for
1960 were predicted by the models established dur-
ing 1961-2008, and then used to calculate the four
extreme temperature indices; while for DS2, extreme
temperature indices for 1960 were downscaled by the
direct relationship between extreme temperature in-
dices and seasonal large-scale predictors during 1961—
2008. Next, we took the second year (1961) for pre-
diction and the remaining 48 values for the fitting of
the model. This process was repeated until all the
years were used once in the prediction and validation
of the models. In that way, 49 models were made
and the same number of predictions was carried out.
The correlation coefficient (R), root mean square error
(RMSE) and mean absolute error (MAE) of the pre-
dictions and observations were used as skill scores to
quantify the model skill.
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To obtain the downscaled extreme indices from the
GCM, the established statistical downscaling models
of DS2 were applied to the HadCM3 historical simu-
lation and RCP4.5 scenario, in order to simulate his-
torical and future extreme temperature indices during
1960-2035 at the selected stations. Because of the
difference between the HadCMS3 historical simulation
and the NCEP-NCAR Reanalysis data, the predic-
tor data from the HadCM3 output could not be di-
rectly applied to the DS2 models established by the
NCEP-NCAR Reanalysis data. Thus, some prepro-
cessing was needed. Firstly, the HadCM3 simulations
of H850 and T850 were standardized, with respect to
the period 1980-99, and then interpolated to the grids
of the NCEP-NCAR Reanalysis data. This procedure
ensured that the results downscaled from the HadCM3
outputs were not affected by the bias in the HadCM3
simulation. Secondly, the standardized fields of H850
and T850 were spatially combined into a new field
(H + T') with the number of grids being equal to the
sum of both H850 and T850, which was similar to the
treatment for the NCEP-NCAR Reanalysis data.

In order to ensure consistency between the
HadCM3-simulated EOFs and those from the NCEP-
NCAR Reanalysis data, the common EOF method was
carried out to obtain the common EOF's of H+T from
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Fig. 2. Illustration of the statistical downscaling process using com-
mon EOF analysis. Here, tncep and tgem denote time dimensions taken
from NCEP-NCAR Reanalysis data and HadCM3 output, respectively,
and ¢ is the time dimension of the combined dataset between the two.
The corresponding PCs from NCEP-NCAR, (PChcep) and observations
(Tobs) at selected stations were used for model calibration and the ma-
trix of the regression coefficients is indicated by ¥. PCgem (correspond-
ing to HadCM3) were used for prediction. Finally, the estimated results
(Tsas) were obtained by using the statistical downscaling method (SDS).
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these two sources (Benestad, 2001). Figure 2 illus-
trates how the common EOF analysis is performed and
how the common EOF products were used for down-
scaling. The principle of the common EOF method
is that two fields (H + T from NCEP-NCAR and
HadCM3) with data points on common grids were
combined along the time axis, and EOF analysis was
applied to the combined dataset (Benestad, 2001).
The common EOFs derived from the EOF analysis
represent the same spatial patterns between NCEP-
NCAR Reanalysis data and HadCM3 simulations,
whereas the PCs from NCEP-NCAR and HadCM3
represent changes in common EOFs with time. In
this study, the first ten PCs derived from NCEP-
NCAR Reanalysis and station observations were used
for the calibration of the statistical downscaling mod-
els, whereas corresponding PCs from the HadCM3
simulations were used to simulate historical and fu-
ture scenarios of extreme temperature indices. Finally,
the results of the statistical downscaling models were
inflated by firstly multiplying the inverse of their stan-
dard deviations relative to the period 1980-99 and
then de-standardizing them by by multiplying their
observed standard deviations and adding their mean
relative to the period 1980-99. This made it possible
to keep the downscaled variance to the same level in
the observation.

4. Results
4.1 Correlation between the means and vari-

ances in temperature and percentile-based
indices

Changes in the mean and variance of temperature
are considered as two main sources that have impacts
on changes in extreme temperature events (Katz and
Brown, 1992; Griffiths et al., 2005). In general, the
distribution of temperatures approximates a normal
distribution. Change in mean temperature will impact
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on extremes as the only source, if there is no change in
variance. However, the relationship will become com-
plex if variance also changes (Fu et al., 2008). There-
fore, the associations between these two main sources
and percentile-based indices should be calculated in
order to explore the feasibility of DS2, where change
in the mean state was used as the only predictor for
percentile-based indices, without taking variance into
consideration. In this study, the mean (Tmaxave and
Tminave) and variance (Tmaxsd and Tminsd) in daily
Tmax and Tmin series were used to indirectly explain
the relationship between the mean state and extremes,
although large-scale seasonal mean variables were used
as the predictors rather than Tmaxave or Tminave it-
self.

Strong relationships were found between Tmaxave
and Tmax90p with R values greater than 0.8 at most
stations (Fig.3a). The relationship between Tminave
and TminlOp was also very strong, with R values
greater than 0.7 at most stations, though the R val-
ues were slightly weaker than those of Tmax in south-
ern parts (Fig.3b). However, the R values between
Tmaxsd and Tmax90p were mostly lower than 0.6
(Fig.4a), and those between Tminsd and TminlOp
had negative correlation coefficients, mostly ranging
between —0.6 and —0.5 (Fig.4b).The stronger corre-
lations between the mean temperature and percentile-
based indices indicate that change in the mean tem-
perature is a more important predictor of changes
in percentile-based indices than those in variance for
summer temperature in northern China. Therefore,
these findings support the application of DS2 in which
percentile-based indices are related to seasonal mean
large-scale predictors.

4.2  Validation of statistical downscaling mod-

els

To illustrate the relative merit of the two modeling
approaches DS1 and DS2, data from Beijing station
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Fig. 3. Correlation between mean temperatures and percentile-based indices: (a)
Tmaxave and Tmax90p; (b) Tminave and Tminl0p.
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Fig. 4. Correlation between standard deviations and percentile-based indices: (a)
Tmaxsd and Tmax90p; (b) Tminsd and Tmin10p.

were used to construct and validate the downscaling
models. The four extreme indices downscaled by DS1
and DS2 through the cross-validation procedure were
compared with observation data from Beijing for 1960
2008 and the results are shown in Fig. 5. For Tmaxave,
both the DS1 and DS2 simulations agreed well with ob-
servations, with DS2 slightly superior to DS1 (Fig. 5a),
while for Tmax90p the results from DS2 were signifi-
cantly better than those of DS1 (Fig. 5b). In the case
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of Tminave, both DS1 and DS2 estimates showed a
very close relationship with the observation (Fig.5c¢),
whereas the result of DS2 for Tmin10p was much closer
to the observation than that of DS1 (Fig.5d). The
three skill scores between the four downscaled indices
using DS1 and DS2 were computed and the results are
shown in Table 1. For Tmaxave, the model perfor-
mance of DS2 showed an obvious superiority to that
of DS1 according to all the three skill scores. For
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Fig. 5. Downscaled time series of the four indices of temperature extremes by DS1
and DS2 within the cross-validation procedure at Beijing Station: (a) Tmaxave; (b)

Tmax90p; (¢) Tminave; and (d) TminlOp.
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Table 1. Validation performance of the four extreme temperature indices at Beijing station within the cross-validation

procedure using DS1 and DS2.

Index Tmaxave
RMSE 0.64
DS1 R 0.72
MAE 0.5
RMSE 0.57
DS2 R 0.81
MAE 0.43

Tmax90p, compared to DS1, although DS2 did not
improved the modeling skill in terms of R, DS2 showed
much better performance in terms of RMSE and MAE.
In the case of Tminave, the model performance of DS2
exceeded that of DS1 in terms of R, while DS2 showed
no obvious superiority to DS1 in terms of RMSE and
MAE. Compared to DS1, DS2 showed better perfor-
mance in downscaling TminlOp in terms of RMSE
and MAE, although no obvious improvement in terms
of the R value was found. Overall, it can be con-
cluded that the model performance of DS2 was obvi-
ously better than that of DS1, especially for percentile-
related indices (Tmax90p and Tminl0p), according to
the comprehensive comparison of the two approaches.
Therefore, in what followed, only DS2 was used.

The model performance of DS2 was checked at all
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Tmax90p Tminave TminlOp
1.31 0.45 1.13
0.70 0.77 0.79
1.06 0.36 0.95
0.96 0.49 0.79
0.68 0.89 0.73
0.75 0.41 0.59

the 48 stations for the four extreme indices. Fig-
ure 6 shows the spatial distribution of the R values
of the four extreme temperature indices between the
observed and the downscaled data using DS2. For
Tmaxave (Fig.6a) and Tminave (Fig.6¢), the R val-
ues at most stations were more than 0.8, while those
of Tmax90p (Fig.6b) and Tminl0p (Fig.6d) ranged
between 0.6 and 0.7 in most areas, with the exception
of the southern part of the study area. With these
results, we can conclude that the DS2 simulations of
the four indices produced a satisfactory performance,
especially for both Tmaxave and Tminave.

When DS2 was applied to HadCM3 simulations,
the PCs corresponding to NCEP-NCAR data obtained
by the common EOF method of HadCM3 and NCEP-
NCAR predictors were used to establish the statis-
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Fig. 6. Spatial distribution of correlation coefficients of the four extreme temperature
indices between observed and downscaled results using DS2 within the cross-validation
procedure: (a) Tmaxave; (b) Tmax90p; (¢) Tminave; and (d) Tminl0p.
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Fig. 7. Time series of the four extreme temperature indices averaged over northern China
where OBS indicates the observations; DS2 NCEP indicates the downscaled results from DS2
by using the PCs of common EOF's corresponding to NCEP-NCAR data; DS2 HadCM3 in-
dicates the downscaled ones from DS2 by using the PCs of common EOF's corresponding to
HadCMS3 simulations. (a) Tmaxave; (b) Tmax90p; (c) Tminave; (d) TminlOp.

tical downscaling models, rather than those by EOF
analysis of only NCEP-NCAR predictors. Thus, the
model performance of DS2 based on the results of the
common EOF analysis was also checked and the re-
sults are shown in Fig. 7. The regional means of the
four extreme temperature indices in northern China
based on the observations are indicated by black lines
and the downscaled ones using the PCs correspond-
ing to NCEP-NCAR data are shown as blue dotted
lines in each of the panels in Fig.7. It can be seen
from Fig. 7 that DS2 was able to successfully estimate
the trends in the two Tmax-related indices (Tmaxave
and Tmax90p), which indicate decreases before 1980
and obvious increases after 1980 (Figs. 7a and b), and
also successfully simulate significant warming trends
since 1960 in two Tmin-related indices (Tminave and
TminlO0p), similar to the observations (Figs. 7c and d).
The conclusion can be made that the established mod-
els based on common EOF analysis possess reasonable
skill for the four indices. As a result, they can be fur-
ther applied to the HadCM3 simulations.

4.3 Downscaling of HadCM3 output

The statistical downscaling models established be-
tween the PCs corresponding to the NCEP-NCAR pre-
dictors and the historical four indices were applied to
those corresponding to the HadCM3 output, and the
historical and future simulations of the four indices
were estimated at each station. The regional means of
the four downscaled indices using the HadCM3 output
are shown by red lines in Fig. 7. The historical simula-
tions agreed well with the observations for each index.
For the prediction of future scenarios, the regional av-
erages of the four extreme indices were found to have a
significant increase up to 2035. For example, Tmaxave
increased from about 28°C to about 30°C (Fig. 7a) and
Tmax90p from about 32°C to around 34°C (Fig. 7b);
Tminave increased from 16.5°C to 18°C (Fig. 7¢) and
Tminl0p from 12°C to about 15°C (Fig. 7d). The 20-
year averages (2016-35) of the four extreme indices
were compared with the 1980-99 average. Two Tmax-
related indices (Tmaxave and Tmax90p) had an av-
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Fig. 8. Change in the 20-year averages (2016-35) of extreme temperature indices
downscaled by DS2, relative to the 1980-99 mean: (a) Tmaxave; (b) Tmax90p;

(¢) Tminave; and (d) TminlOp.

erage warming of around 1.5°C at most stations, ex-
cept the southern part of northern China (Figs. 8a and
b), and Tminave had an average warming of around
1.0°C (Fig.8c). Compared to the three extreme in-
dices above, Tminl0Op had a more notable warming
trend of around 2°C at most sites, except the south-
ern part of northern China where there was a rise of
about 1.5°C (Fig. 8d).

5. Discussion and conclusions

A strong relationship between summer mean tem-
perature and percentile-based temperature indices and
a weak relationship between variance in temperature
and percentile-based temperature indices were found
in northern China, indicating that changes in mean
temperature have a major impact on changes in the
percentile-based indices. Griffiths et al. (2005) also
considered that strong correlations between mean tem-
perature and extreme indices in the Asia-Pacific region
support the hypothesis that changes in mean temper-
ature may be used to predict changes in extreme cli-
mate. Thus, these results provide a strong basis to
connect extreme indices with mean large-scale predic-
tors in northern China.

A comparison between the two statistical down-
scaling approaches (DS1 and DS2) was made in down-
scaling four indices of temperature extremes at Bei-

jing station. It can be concluded that the DS2 mod-
els, which are based on relationships between sea-
sonal large-scale predictors and extreme temperature
indices, are superior to those using daily values (DS1)
of local temperature and large- scale predictors.

By applying DS2 to downscale extreme tempera-
ture indices at 48 stations in northern China, the re-
sults of cross-validation showed that extreme temper-
ature indices have a strong correlation with seasonal
large-scale climate in summer, which confirms the rel-
ative merit of DS2 over DS1. Moreover, DS2 needs
monthly GCM outputs, which are more easily avail-
able than daily ones. Thus, DS2 is considered useful
in solving the difficult and complex problem of down-
scaling daily Tmax and Tmin. To summarize, DS2 has
been shown to be an effective approach for downscal-
ing extreme temperature indices based on percentiles.

This study focused on solving the problem of down-
scaling statistics such as the 90th percentile of daily
Tmax and 10th percentile of daily Tmin, rather than
the daily time series of temperatures, which is similar
to previous work by Benestad (2009) and Hass and
Born (2011). Benestad (2009) successfully used sta-
tistical downscaling to directly predict the probability
density function of precipitation in Oslo, and Hass and
Born (2011) applied probability downscaling to down-
scale the 25th, 50th and 75th percentiles of precipita-
tion in a subtropical mountainous area. Both studies
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were aimed at statistically downscaling the distribu-
tion function in which it should be assumed that pre-
cipitation obeys a certain distribution and the param-
eters of the cumulative distribution function or prob-
ability density function are to be directly downscaled,
rather than downscaling daily precipitation time se-
ries themselves. In contrast to the studies above, this
study focused on the statistical downscaling of the
statistics of daily time series, such as the 90th per-
centile of Tmax and 10th percentile of Tmin, which
has one major advantage in that the statistical down-
scaling processes do not need to make the assumption
that daily time series follow a certain distribution.

This study, and the study of Hass and Born (2011),
used the linear regression method, which is valid when
the variables involved approximately obey the normal
distribution. The performance of directly applying the
linear regression method to extreme temperature in-
dices was superior to that of directly using daily data,
enabling us to conclude that linear regression models
are probably appropriate for downscaling percentile-
based indices.

As we know, statistical downscaling results have
some uncertainties (Chen et al., 2006). This work
focused on comparing two statistical downscaling ap-
proaches. In fact, there are other aspects that can
be important too. As an example, different predictor
domains and various different combinations of possi-
ble predictors can be explored. In addition, this work
used only one global climate model and one emission
scenario to project future changes, knowing that other
models and scenarios will give different results. Nev-
ertheless, the findings of this study will be useful for
more systematic studies in the future.
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