Trend of estimated actual evapotranspiration over China during 1960-2002

Ge Gao1,2 Deliang Chen1,2 Chongyu Xu3,4 Elisabeth Simelton2

1 Laboratory for Climate Studies/National Climate Center, China Meteorological Administration, No. 46 Zhongguancun Nandajie, Haidian, Beijing 100081, China
2 Regional Climate Group, Earth Sciences Centre, Göteborg University, PO Box 460, 405 30 Göteborg, Sweden
3 Department of Geosciences, University of Oslo, P O Box 1047 Blindern, N-0316 Oslo, Norway
4 Department of Earth Sciences, Uppsala University, Sweden
gaoge@cma.gov.cn

Abstract:

In this study, the water balance methodology introduced by Thornthwaite and Mather [1955] is modified to estimate monthly actual evapotranspiration for 686 stations over China during 1960-2002. The modification is done by replacing the Thornthwaite potential evapotranspiration estimation with the Penman-Monteith method. Temporal trend and spatial distribution of the estimated annual actual evapotranspiration during the past 43 years are analyzed. The results show that: 1) the actual evapotranspiration had a decreasing trend in most areas east of 100$^\circ$E and there was an increasing trend in the west and the north part of Northeast China; 2) the spatial distribution of the trend in the actual evapotranspiration is similar to that of the potential evapotranspiration in south China, while the trends are opposite in north China; 3) for most parts of China, the change in precipitation played a key role for the change of
estimated actual evapotranspiration, while in the southeast China, the change of
potential evapotranspiration appeared to be the major factor; 4) in general, the
hydrological cycle was intensified in western China, whereas it was weakened from
the Yellow River basin and northwards.

Keywords: Actual evapotranspiration; trend; water balance model; Thornthwaite;
Penman-Monteith method; China

1. Introduction

Along with the increasing global temperature, much evidence from the changes of
precipitation, runoff and soil moisture suggests that the hydrological cycle has been
intensified in many parts of the world during the past century [e.g. Alan et al., 2003;
Huntington, 2006]. As the only connecting term between water balance and energy
balance and due to complex interactions in the land–plant–atmosphere system, actual
evapotranspiration is perhaps the most difficult and complicated component of the
hydrological cycle [Xu and Singh, 2005]. Contrary to the expectation that a warmer
climate will bring about an increase in evaporation, many studies have shown that pan
evaporation and potential evapotranspiration had decreased over the past decades in
many places of the world [Peterson et al., 1995; Chattopadhyay and Hulme, 1997;
Brutsaert and Parlane, 1998; Lawrimore and Perterson, 2000; Thomas, 2000;
Roderick and Farquhar, 2002, 2004; Liu et al., 2004a; Chen et al., 2005; Xu et al.,
2006a,b]. Some of these studies have attempted to identify what meteorological
factors have caused this trend [e.g. Gong et al., 2006], which is useful to explain the evaporation paradox. A number of studies have shown that the trend is not determined by temperature alone [e.g. Ohmura and Wild, 2002; Xu et al., 2006a,b]. Roderick and Farquhar [2002] suggest that the decrease in observed potential evaporation by pan in Northern Hemispheres was consistent with what one would expect from the observed large and widespread decreases in sunlight resulting from increasing cloud coverage and aerosol concentration. For China, Liu et al. [2004a] find that the decrease in solar irradiance, attributed to increased concentrations of aerosols, was the most likely driving force for the reduced pan evaporation. More recently, Ren and Guo [2006], Gao et al. [2006] and Xu et al. [2006a,b] further demonstrate that solar radiation and wind speed were the major contributors to the changes in pan evaporation as well as potential evapotranspiration estimated by Penman-Monteith method in China and the Yangtze River basin, respectively.

Due to a varying degree of access to water, actual evapotranspiration can be much less than potential evapotranspiration. Actual evapotranspiration is more complicated and driven essentially by climatic factors, mediated by the vegetation and soil characteristics, and constrained by the amount of available water [Arnell and Liu, 2001]. Climate change has the potential to affect all of these factors in a combined way.

There are a number of methods to evaluate actual evapotranspiration. Rana and
Katerji [2000] summarize 10 methods for measuring and estimating actual evapotranspiration. Depending on purpose, the methods can be divided into hydrological, micrometeorological, and plant physiological. All methods have their advantages and disadvantages. For example, a weighing lysimeter can provide detailed information about the water balance, however, it is practically and economically impossible to measure evapotranspiration over widespread areas for a considerable long time period [Xu and Chen, 2005]. Therefore, actual evapotranspiration is usually estimated through less complex physically-based or empirical approaches.

Linacre [2004] proposes that actual evapotranspiration can be evaluated through a relationship between available water content in the soil and evaporation rate. Xu and Chen [2005] compare two different approaches in estimating actual evapotranspiration: the complementary evapotranspiration models derived by Bouchet [1963] and a model based on a soil water balance where the actual evapotranspiration is considered as a fraction of the potential evapotranspiration and the fraction is an increasing function of the soil water content.

Until now, studies on changes in actual evapotranspiration are still few and limited. From a hydrological cycle point of view, Brutsaert and Parlange [1998] explain the evaporation paradox as a reaction to the decrease in pan evaporation over a significant portion of the extratropical land area in the Northern Hemisphere and argue that
decreasing pan evaporation actually provided a strong indication of increasing actual evapotranspiration in many situations. Milly and Dunne [2001] relate an upward trend in actual evapotranspiration over the Mississippi River Basin between 1949 and 1997 primarily to increased precipitation and secondly to increased human water use. Using large weighing lysimeters, Golubev et al. [2001] find that the actual evapotranspiration during the warm seasons of 1950-1990 tend to increase in some relatively dry parts of southern Russia and Ohio, while, there is a decreasing trend of actual evaporation in two wetter places of the taiga. Similarly Linacre [2004] points out that declining pan evaporation did not necessarily mean declining actual evapotranspiration.

Trends for potential evapotranspiration of major basins in China from 1951 to 2000 have been established recently [e.g. Chen et al., 2005], while the trend of actual evapotranspiration during the past 50 years remains to be determined. Zhan et al. [2005] calculate monthly and annual actual evapotranspiration using a water balance model and the result shows that the actual evapotranspiration increased during 1991 and 2000 in most parts of China, especially in the arid and semiarid regions. These results are interesting; however, the relatively short time period makes it difficult to put them into a climate change perspective. In this study, we use a similar but improved water balance model to estimate actual evapotranspiration and other components of the water balance on monthly scale over China during 1960 and 2002. The improvement is done by replacing the Thornthwaite potential evapotranspiration...
estimation with the Penman-Monteith method in the water balance model. Furthermore, we analyze the trend of actual evapotranspiration in relation to changes of other components of the water balance in China.

2. Method and data

2.1. Water balance model

The water balance model used in this study is based on the Thornthwaite-Mather approach [Thornthwaite and Mather, 1955]. Considering the deficiencies of potential evapotranspiration estimated by the Thornthwaite method in China, i.e. temperature and latitude only considered in the Thornthwaite method and unreliable results given under dry conditions [Chen et al., 2005], the potential evapotranspiration estimated in the Thornthwaite-Mather water balance approach is replaced by the Penman-Monteith method [Allen et al., 1998]. However, since there is practically no active vegetation cover during winter in northern China, the reference evapotranspiration will be overestimated, which asks for a correction of the estimated reference evapotranspiration in northern China. In this study, the reference evapotranspiration is simply assumed to be 0 mm when the monthly air temperature is less than or equal to 0°C. This assumption is held realistic since cold months with freezing temperatures in China are often associated with snow cover which prevents effective evapotranspiration from vegetation cover and soil surfaces. This treatment should be considered as an improvement of the previous estimates by Chen et al. [2005]. To maintain the simplicity of the model, other hydrological processes such as
snow pack and melting, are not taken into account. Further, irrigation is not included in the model.

The governing equation of the water balance model can be described as follows:

\[S = P - E_a - \Delta W / \Delta t \]

(1)

where \(S \) is water surplus, \(P \) is precipitation, \(E_a \) is actual evapotranspiration, \(W \) is soil water content \((W_0 \leq W \leq W_{fc}) \), where \(W_{fc} \) represents soil water holding capacity (field capacity), \(W_0 \) is the lower limit of evaporable soil water which is assumed to be equal to the moisture at wilting point \(W_p \), and \(t \) is time. \(E_a \) is calculated as follows:

\[
E_a = \begin{cases}
 P + \beta(W - W_p, W_{fc} - W_p)(E_p - P) & P < E_p \\
 E_p & P \geq E_p
\end{cases}
\]

(2)

where \(E_p \) is the potential evapotranspiration, calculated by the Penman-Monteith method for a reference surface. The soil moisture retention function \(\beta \) depends on the ratio of available soil water content and maximum available soil water content expressed as \(\frac{W - W_p}{W_{fc} - W_p} \), namely soil water retention curve C [Mather, 1974]. In this way, \(\beta \) will decrease linearly until all available water is used up. In order to estimate the monthly change of \(W \), the \(W \) is calculated on a daily time step assuming equal values of \((P - E_p) \) for each day of the month. The soil moistures at the beginning and end of each month are used to calculate the monthly change of \(W \).

If \(P < E_p \), the soil water will be depleted to compensate the water supply. At the
same time, $E_a < E_p$ and $S=0$. If $P \geq E_p$, then $E_a = E_p$, W is initially estimated with $S = 0$. If $W > W_{fc}$, then $S = W - W_{fc}$ and if $W \leq W_{fc}$, then $S = 0$.

Typically the initial soil water content is unknown, therefore a balancing routine (spin-up period) is used to force the net change in soil moisture from the beginning to the end of a specified balancing period to zero. The spin-up period is set to 60 months. When the change of the soil water content at the end of the balancing period is less than 1.0 mm, the spin-up process is over. The soil depth of the model is set to 1 m.

A dominant merit of the water balance model for actual evapotranspiration estimation is that it can reflect the influence of soil water content dynamically in addition to climatic factors. The change of soil water content is important for actual evapotranspiration especially in arid regions and during the dry season in other climatic regions.

2.2. Trend analysis and associated significance test

Simple linear regression method and Mann-Kendall trend test which is highly recommended for general use by the World Meteorological Organization [Mitchell et al., 1966], are used to determine the trends for the annual potential and actual evapotranspiration as well as other meteorological elements and to test their significance. The rank-based Mann-Kendall method [Mann, 1945; Kendall, 1975] is a nonparametric and commonly used method to assess the significance of monotonic
trends in hydro-meteorological time series [e.g. Alan et al., 2003; Yue and Pilon, 2004]. This test has the advantage of not assuming any distribution form for the data and has the similar power as its parametric competitors [Serrano et al., 1999]. The significance level used in this study is 0.05.

2.3. Data

Inputs to the water balance model consist of observed climatic data and gridded soil characteristics.

2.3.1 Climate data

The climate data include the observed monthly mean temperature and precipitation (from National Data Center of China Meteorological Administration) as well as monthly potential evapotranspiration calculated by the Penman-Monteith equation [Chen et al., 2005] from 743 stations in China. The longest time series are from 1951 to 2002. However, not all the stations have complete records and acceptable quality during 1951 and 2002. Only 686 stations are chosen to calculate the averaged water balance components including actual evapotranspiration for 1971-2000 (see Figure 1). For annual trend analysis, we use data from 1960 to 2002 and required that a station is used in the analysis only if it has data in the start and end of the period and the total missing data in between is less than 5% and it does not have serious inhomogeneity problem. Only 546 stations meet the requirements and are used in this trend analysis. Missing data of the stations are replaced with long term means for the whole study.
period.

2

2.3.2 Soil parameters

To our knowledge, soil water holding capacity \(W_{fc} \) and wilting point \(W_p \) data are observed at few and scattered agro-meteorological stations in China. Thus, the two soil parameters from the IGBP-DIS Global Gridded Surfaces of Selected Soil Characteristics database [Global Soil Data Task Group, 2000] are used for the water balance model, although there are several limitations using this kind of inferred and coarse spatial resolution data [see Tempel et al., 1996; Bajtes 2002a, b]. Originally this dataset was derived from the soil physical attributes in the 1995 digital 1:5 million scale FAO Soil Map of the World and the Global Pedon Database [for further description see Tempel et al., 1996; Global Soil Data Task Group, 2000; Batjes, 2002b]. Each station’s value is extracted from the 5×5 arc-minutes gridded soil parameters for the 0 - 1m topsoil layer in ArcMap. In this study the soil parameters are assumed static, hence land use changes and their impact on soil physical characteristics and indirectly on evapotranspiration are not considered.

3. Results

3.1. Sensitivity of water balance to soil parameters

To determine the impact of the accuracy of soil parameters on the estimated water balance, the observed soil moisture at six non-irrigated stations for 1981- 2002 are compared with those estimated by the model using soil parameters from the
IGBP-DIS (Table 1). This test indicates that the estimated actual evapotranspiration is insensitive to the choices of the soil parameters (not shown). Although remarkable differences exist in absolute magnitudes of the available soil moisture and runoff, the annual values co-vary well as reflected by the high correlation.

Figure 2 compares trends of actual evapotranspiration under different soil parameters for all the 546 meteorological stations used in this study. The calculated trends of actual evapotranspiration display only minor differences for most stations under these conditions. This further confirms that the estimated trend for actual evapotranspiration from the water balance model is generally insensitive to the selected soil parameter values, and that use of the soil parameters taken from IGBP data base will bring about a minor effect on the estimated trend of actual evapotranspiration.

3.2. Annual actual evapotranspiration and precipitation

The spatial patterns of the annual actual evapotranspiration and precipitation averaged over 1971-2000 in China are shown in Figures 3a and 3b, respectively. The southward increase in annual actual evapotranspiration from 20 mm in the northwest to 1000 mm in southeast resembled the pattern of precipitation. The 200, 400 and 800 mm contour lines of annual precipitation roughly divided China into arid, semi-arid, semi-humid and humid climates from northwest to southeast. Areas where precipitation exceeds 400 mm are mainly affected by the summer monsoon and constitute major agricultural regions. In arid and semi-arid areas, the actual evapotranspiration and
annual precipitation display similar distribution and magnitudes. Similarly, in semi-humid areas with annual precipitation varying between 400 and 800 mm, the annual evapotranspiration and annual precipitation are analogous except for eastern Liao River basin where precipitation is higher. For humid areas, the annual actual evapotranspiration is clearly lower than the annual precipitation. In Northeast China, north parts of Xinjiang and Tibetan plateau the mean number of days with snow cover are longer than and equal to 50 days (Figure 3a). The present calculation does not explicitly treat snow accumulation and melting processes, which may cause a bias in the estimated potential evapotranspiration, actual evapotranspiration and the ratio of them in those areas that are covered by snow for long time. However, this bias is considered of minor importance since the areas are very cold with air temperature far below zero in winter.

Another factor reflecting the wetness of the soil is the ratio of actual to potential evapotranspiration, where a ratio approaching 1 signifies increasing humidity. The average ratios of 1971-2000 are shown in Figure 4. The actual evapotranspiration is close to the potential evapotranspiration with ratios between 0.8 and 1 in the Pearl River, the middle and eastern parts of the Yangtze River, as well as the river basins in southeastern China, southeastern Tibetan Plateau, northern and eastern Songhua River basin, and eastern Liao River basin. These are the humid regions in China where the actual evapotranspiration is close to the upper limit. For the arid desert regions in northwestern China, however, the difference between actual and potential
Evapotranspiration is relatively larger and the actual evapotranspiration occupies less than 10% of the potential evapotranspiration. For the semi-arid and semi-humid areas, the ratios vary from 0.2 in the northwest to 0.7 in the southeast which coincide with spatial distribution of precipitation.

The above results clearly reveal that in the arid northwest part of China most incoming precipitation evaporates back to the atmosphere and the actual evapotranspiration is controlled by the amount of precipitation, regardless of the potential evapotranspiration amounts. Thus, this can be referred to as a “water limited” system. However, in the more humid southeast part of China the actual evapotranspiration is restricted by the evaporative demand (or energy available for evaporation as reflected by potential evapotranspiration), hence an “energy limited” system. In other regions the intra-annual and inter-annual variations in precipitation and potential evapotranspiration are manifested in the soil moisture content and consequently an actual evapotranspiration varies between the two limiting systems.

These spatial distribution maps provide valuable information for water resources planning and management in China, which will also supply an important background and physical interpretation for climate change studies in the region. Changing a meteorological variable in different seasons or areas will have a different effect on the reference evapotranspiration, and in turn, on the actual evapotranspiration and the hydrological cycle.
3.3. Temporal trends of annual actual and potential evapotranspiration

Previous studies [e.g., Chen et al., 2005] have shown that the potential evapotranspiration decreased during 1951-2000 in most parts of China. However, for water balance studies the spatial and temporal variations of actual evapotranspiration are more important. The spatial distributions of temporal trends for potential and actual evapotranspiration during 1960-2002 are compared in Figure 5 and Figure 6.

Figure 5 illustrates a widespread decreasing trend of potential evapotranspiration in most parts of China during 1960-2002, which is consistent with previous studies [e.g., Chen et al., 2005]. The trends are particularly significant in south and northwest of China. The belt from northeastern China through middle and upper Yellow River basin and southwestward towards east Tibetan plateau has a slight increasing trend. Most of these areas belong to semi-arid/semi-humid regions or lie in the transition zone from animal husbandry to grain agriculture with high climatic sensitivity. If precipitation is constant, an increase in potential evapotranspiration would result in increasing water demands for agriculture.

The annual estimated actual evapotranspiration tends to decrease in most areas east of 100°E and increase in areas west of it between 1960 and 2002 (see Figure 6). The negative trends range from about -30 mm/10yr to -10mm/10yr and are significant for most parts of the Hai River basin, low and middle reaches of the Yellow River basin, middle part of the Yangtze River basin, middle and north part of the Pearl River basin and the rivers in southeast China. Contrarily, in the west and adjacent areas of the
100°E longitude, in northern Songhua River basin and the rivers in northwest of China, the annual actual evapotranspiration tended to increase. Particularly in southeast Tibetan, north of Xinjiang, and north of the Songhua River basin, the trends vary between 5 mm/10yr and 20 mm/10yr. However, the increasing trends are insignificant with a few exceptions.

Generally speaking, the spatial patterns of the temporal trends for annual potential and actual evapotranspiration are similar in southern China, but are contrary to each other in northern China during 1960-2002. This means that in the arid and semi-arid regions the variation of actual evapotranspiration is to a large extent controlled by other factors than potential evapotranspiration. The result resembles those of Linacre [2004], i.e. under wet conditions actual evapotranspiration equals to the potential evapotranspiration, while under arid conditions soil dryness or precipitation governs the evaporation losses. The result is also consistent with the widespread Budyko type Interpretation [see Roderick and Farquhar, 2004; Milly and Dunne, 2001]. The role played by precipitation will be discussed further in the following section.

4. Discussion

As the largest component of the water balance, changes in precipitation are expected to affect the amounts and redistribution of the other components in the water balance. Figure 7 shows the spatial distribution of the trend in annual precipitation during 1960-2002. The pattern is generally similar to the results of Zhai et al. [2005] for
1951-2000. The annual precipitation has decreased over parts of the Songhua River Basin, the Liao River Basin, the Hai River Basin, the Yellow River Basin, the Huai River Basin and the middle part of the Yangtze River Basin. For northern China the general decreasing trend in precipitation is partly explained by a weakening of the Asian summer monsoon during the past decades [e.g., Wang et al., 2004]. Similarly, the annual actual evapotranspiration in these areas shows negative trends even though the surface air temperatures have increased significantly in northern China during 1955-2000 [Liu et al., 2004b]. In the above mentioned areas reduced amounts of precipitation have played an important role for the decreasing trend in the estimated actual evapotranspiration, which is further strengthened by decreasing potential evapotranspiration. Decreases in precipitation and actual evapotranspiration mean a weakening of the hydrological cycle in these areas. Much evidence points to that the stream-flows in the Hai River and the Yellow River decreased remarkably in the recent twenty years as a result of less precipitation and increasing human activities [e.g., Liu et al., 2004; Li and Yang, 2004; Ma, 2005]. Droughts became more frequent and serious [Zhai et al., 2005]. North China in particular, suffered from continuous and serious droughts in the late 1990s and early 2000s.

In western China, the increasing annual precipitation trend drives the increasing trend of actual evapotranspiration, accompanied by increasing air temperature. Accordingly, the hydrological cycle was intensified between 1960 and 2002. In some parts of the source areas of the Yangtze River and the Yellow River (Qinghai-Tibet plateau), the
actual evapotranspiration increased whereas the annual precipitation decreased which had brought about a drier climate.

In southeastern China, including the river basins in southeast China, eastern Yangtze River basin and the middle of Pearl River basin, the annual precipitation has increased significantly accompanied by increasing air temperatures [Liu et al., 2004b] and decreasing potential evapotranspiration during 1960-2002. In the humid areas, the changes of actual evapotranspiration are unrestricted by water supply due to relatively abundant precipitation. Thus, the potential evapotranspiration is mainly controlled by climatic factors and sets the upper limits for actual evapotranspiration. Hence, the decreasing potential evapotranspiration largely influences the decreasing trends of actual evapotranspiration in these regions. Moreover, the combination of increased precipitation and decreased actual evapotranspiration has amplified runoff in the lower reaches of Yangtze River [Qin et al., 2005].

It should be kept in mind that the water balance model used in this study is highly simplified. For example, different vegetation covers across China in reality is replaced with the reference vegetation. Furthermore, a number of choices regarding the potential evapotranspiration and soil parameters (e.g. soil depth) used in the water balance model have been made, which certainly have impacts on the estimated water balance, including the actual evapotranspiration. Future studies are needed to further
identify the roles played by these choices and by processes that are unaccounted for in
the water balance model.

5. Conclusions

From the above results and discussions, the following conclusions may be drawn:

1) The estimated actual evapotranspiration in China shows a decreasing trend in most
areas east of the 100°E longitude during 1960 and 2002, except for northeastern
Songhua River basin in northeast. West areas of the 100°E have an increasing
trend of the actual evapotranspiration for the same period.

2) The trends for the estimated actual and potential evapotranspiration are distributed
similarly in humid southern China, while they have opposite signs in north and
northwest, where the estimated actual evapotranspiration simply followed the
precipitation changes.

3) In most parts of China, the trend in precipitation played a key role for the
long-term change of the actual evapotranspiration except for southeast where
changes in the potential evapotranspiration was the major factor.

4) The hydrological cycle has intensified in western China and weakened from the
Yellow River basin and northwards between 1960 and 2002.

Acknowledgements

This research is supported by grants from Climate Change Special Fund of China
Meteorological Administration (CCSF2006-6-1), the Chinese Ministry of Water
resources, the Swedish Foundation for International Cooperation in Research and
References

1 Alan, D. Z., S. Justin, P.M. Edwin, N. Bart, F.W. Eric, and P.L. Dennis (2003),
2 Detection of intensification in global- and continental-scale hydrological cycles:
5 guidelines for computing crop water requirements – FAO Irrigation & Drainage
7 Arnell, N., and C.-Z. Liu (2001), Chapter 4: Hydrology and water resources, in *IPCC
8 Third Assessment Report, Climate change 2001 Impacts, adaptation and
9 vulnerability*, edited by J. M. James, F. C. Osvaldo, A. L. Neil, J. D. David, and
11 Batjes, N.H. (2002a), Revised soil parameter estimates for the soil types of the world,
13 Batjes, N.H. (2002b), Soil parameter estimates for the soil types of the world for use in
14 global and regional modeling (Version 2.1; July 2002), ISRIC Report 2002/02c
16 Institute (IFPRI) and International Soil Reference and Information Centre
17 (ISRIC), Wageningen.
18 Bouchet, R. J. (1963), Evapotranspiration réelle et potentielle, signification climatique,
19 In *Symposium on Surface Waters*, pp. 134–142, IAHS Publication No.62, IAHS
20 Press, Wallingford.
21 Brutsaert, W., and M. B. Parlange (1998), Hydrologic cycle explains the evaporation

Kendall, M. G. (1975), Rank correlation methods, Griffin, London, UK.

Rana, G. and N. Katerji (2000), Measurement and estimation of actual

Zhan, C.-S., J. Xia, Z.-L., Li, and C.-W. Niu (2005), Regional hydrological impacts of climatic change—hydroclimatic variability, IAHS Publ. 296, pp.283-290,

Proceedings of symposium S6 held during the Seventh IAHS Scientific
Assembly at Foz do Iguaçu, Brazil, April.
Table 1: Calculated water balance model components based on two sources of the soil parameters, IGBP soil global database (IGBP) and observations (OB), as a long-term average (1981-2002) for six agricultural stations in China. (ASM= annual mean available soil moisture (mm); RE1 and RE2= correlation coefficients of annual available soil moistures and actual evaporations (AE:mm) between the two estimates using different soil parameters respectively; Runoff = annual runoff (mm); Prec = annual precipitation (mm); PE=potential evapotranspiration (mm). The location of the stations are indicated with cross symbol in Figure 1).

<table>
<thead>
<tr>
<th>Stations</th>
<th>ASM (IGBP)</th>
<th>ASM (OB)</th>
<th>RE1</th>
<th>AE (IGBP)</th>
<th>AE (OB)</th>
<th>RE2</th>
<th>Runoff (IGBP)</th>
<th>Runoff (OB)</th>
<th>Prec</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tailai</td>
<td>45.2</td>
<td>23.0</td>
<td>0.95</td>
<td>400.5</td>
<td>389.7</td>
<td>0.95</td>
<td>2.1</td>
<td>12.9</td>
<td>402.8</td>
<td>804.4</td>
</tr>
<tr>
<td>Xifengzhen</td>
<td>71.4</td>
<td>58.3</td>
<td>0.99</td>
<td>522.4</td>
<td>520.2</td>
<td>1.00</td>
<td>0.4</td>
<td>2.8</td>
<td>523.4</td>
<td>804.8</td>
</tr>
<tr>
<td>Xilinhaote</td>
<td>11.1</td>
<td>10.8</td>
<td>0.99</td>
<td>270.7</td>
<td>270.7</td>
<td>1.00</td>
<td>0.0</td>
<td>0.0</td>
<td>271.0</td>
<td>829.6</td>
</tr>
<tr>
<td>Changling</td>
<td>62.1</td>
<td>54.4</td>
<td>0.99</td>
<td>436.7</td>
<td>435.2</td>
<td>1.00</td>
<td>2.2</td>
<td>3.5</td>
<td>437.8</td>
<td>761.4</td>
</tr>
<tr>
<td>Tianshui</td>
<td>78.1</td>
<td>72.6</td>
<td>0.99</td>
<td>488.7</td>
<td>487.6</td>
<td>1.00</td>
<td>1.6</td>
<td>2.6</td>
<td>488.9</td>
<td>718.1</td>
</tr>
<tr>
<td>Nanyang</td>
<td>125.0</td>
<td>134.3</td>
<td>0.99</td>
<td>688.7</td>
<td>691.8</td>
<td>1.00</td>
<td>84.6</td>
<td>81.5</td>
<td>772.9</td>
<td>863.0</td>
</tr>
</tbody>
</table>