UNDERSTANDING SEA-LEVEL RISE AND VARIABILITY

Understanding Sea-Level Rise and Variability Edited by John A. Church, Philip L. Woodworth, Thorkild Aarup and W. Stanley Wilson © 2010 Blackwell Publishing Ltd. ISBN: 978-1-444-33451-7

### In Memoriam: M.B. Dyurgerov

The Editors and Authors of this volume wish to honor the memory of Dr Mark B. Dyurgerov and acknowledge his valuable contributions to it. He will be missed by the glaciological and sea-level communities as an honest broker and an excellent scientist.

# UNDERSTANDING SEA-LEVEL RISE AND VARIABILITY

# EDITED BY JOHN A. CHURCH

CENTRE FOR AUSTRALIAN WEATHER AND CLIMATE RESEARCH, A PARTNERSHIP BETWEEN CSIRO AND THE BUREAU OF METEOROLOGY, HOBART, AUSTRALIA

## PHILIP L. WOODWORTH proudman oceanographic laboratory, liverpool, uk

# THORKILD AARUP

INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION, UNESCO, PARIS, FRANCE

# AND

W. STANLEY WILSON NOAA SATELLITE & INFORMATION SERVICE, SILVER SPRING, MARYLAND, USA



A John Wiley & Sons, Ltd., Publication

This edition first published 2010, © 2010 by Blackwell Publishing Ltd

Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell's publishing program has been merged with Wiley's global Scientific, Technical and Medical business to form Wiley-Blackwell.

Registered office: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

#### *Editorial offices*: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www. wiley.com/wiley-blackwell

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

#### Library of Congress Cataloguing-in-Publication Data

Understanding sea-level rise and variability / edited by John A. Church ... [et al.].

p. cm. Includes bibliographical references and index. ISBN 978-1-4443-3451-7 (hardcover : alk. paper) – ISBN 978-1-4443-3452-4 (pbk. : alk. paper) 1. Sea level. I. Church, John, 1951-

GC89.U53 2010 551.45'8–dc22

2010012130

ISBN: 978-1-4443-3452-4 (paperback); 978-1-4443-3451-7 (hardback)

A catalogue record for this book is available from the British Library.

Set in 10 on 12.5 pt Minion by Toppan Best-set Premedia Limited Printed in Singapore

1 2010

# Contents

| Edi  | tor Biographies                                          | Х    |
|------|----------------------------------------------------------|------|
| List | of Contributors                                          | xi   |
| For  | eword                                                    | xvii |
| Ack  | nowledgments                                             | xix  |
| Abł  | previations and Acronyms                                 | xxii |
| 1    | Introduction                                             | 1    |
|      | Philip L. Woodworth, John A. Church, Thorkild Aarup, and |      |
|      | W. Stanley Wilson                                        |      |
|      | References                                               | 15   |
| 2    | Impacts of and Responses to Sea-Level Rise               | 17   |
|      | Robert J. Nicholls                                       |      |
|      | 2.1 Introduction                                         | 17   |
|      | 2.2 Climate Change and Global/Relative Sea-Level Rise    | 18   |
|      | 2.3 Sea-Level Rise and Resulting Impacts                 | 22   |
|      | 2.4 Framework and Methods for the Analysis of            |      |
|      | Sea-Level-Rise Impacts                                   | 25   |
|      | 2.5 Recent Impacts of Sea-Level Rise                     | 27   |
|      | 2.6 Future Impacts of Sea-Level Rise                     | 30   |
|      | 2.7 Responding to Sea-Level Rise                         | 37   |
|      | 2.8 Next Steps                                           | 40   |
|      | 2.9 Concluding Remarks                                   | 41   |
|      | Acknowledgments                                          | 43   |
|      | References                                               | 43   |
| 3    | A First-Order Assessment of the Impact of Long-Term      |      |
|      | Trends in Extreme Sea Levels on Offshore Structures and  |      |
|      | Coastal Refineries                                       | 52   |
|      | Ralph Rayner and Bev MacKenzie                           |      |
|      | 3.1 Introduction                                         | 52   |
|      | 3.2 Design Considerations                                | 54   |
|      | 3.3 Impact of Long-Term Trends in Extreme Sea Levels     | 55   |
|      | 3.4 Evaluating the Economic Impact                       | 57   |
|      | 3.5 Conclusions                                          | 58   |
|      | References                                               | 59   |

# vi Contents

| 4 | Paleo                                              | environmental Records, Geophysical Modeling, and            |     |
|---|----------------------------------------------------|-------------------------------------------------------------|-----|
|   | Reco                                               | nstruction of Sea-Level Trends and Variability on           |     |
|   | Cent                                               | ennial and Longer Timescales                                | 61  |
|   | Kurt                                               | Lambeck, Colin D. Woodroffe, Fabrizio Antonioli, Marco      |     |
|   | Anzia                                              | lei, W. Roland Gehrels, Jacques Laborel, and Alex J. Wright |     |
|   | 4.1                                                | Introduction                                                | 61  |
|   | 4.2                                                | Past Sea-Level Changes                                      | 62  |
|   | 4.3                                                | Sea-Level Indicators                                        | 73  |
|   | 4.4                                                | Geophysical Modeling of Variability in Relative             |     |
|   |                                                    | Sea-Level History                                           | 84  |
|   | 4.5                                                | Regional Case Studies                                       | 88  |
|   | 4.6                                                | Discussion and Conclusions                                  | 95  |
|   |                                                    | Acknowledgments                                             | 105 |
|   |                                                    | References                                                  | 105 |
| 5 | Mod                                                | ern Sea-Level-Change Estimates                              | 122 |
|   | Gary                                               | T. Mitchum, R. Steven Nerem, Mark A. Merrifield, and        |     |
|   | W. R                                               | pland Gehrels                                               |     |
|   | 5.1                                                | Introduction                                                | 122 |
|   | 5.2                                                | Estimates from Proxy Sea-Level Records                      | 123 |
|   | 5.3                                                | Estimates of Global Sea-Level Change from                   |     |
|   |                                                    | Tide Gauges                                                 | 126 |
|   | 5.4                                                | Estimates of Global Sea-Level Change from                   |     |
|   |                                                    | Satellite Altimetry                                         | 133 |
|   | 5.5                                                | Recommendations                                             | 137 |
|   |                                                    | Acknowledgments                                             | 138 |
|   |                                                    | References                                                  | 138 |
| 6 | Ocea                                               | n Temperature and Salinity Contributions to Global and      |     |
|   | Regio                                              | onal Sea-Level Change                                       | 143 |
|   | John A. Church, Dean Roemmich, Catia M. Domingues, |                                                             |     |
|   | Josh I                                             | K. Willis, Neil J. White, John E. Gilson, Detlef Stammer,   |     |
|   | Armin Köhl, Don P. Chambers, Felix W. Landerer,    |                                                             |     |
|   | Joche                                              | m Marotzke, Jonathan M. Gregory, Tatsuo Suzuki,             |     |
|   | Anny                                               | Cazenave, and Pierre-Yves Le Traon                          |     |
|   | 6.1                                                | Introduction                                                | 143 |
|   | 6.2                                                | Direct Estimates of Steric Sea-Level Rise                   | 145 |
|   | 6.3                                                | Estimating Steric Sea-Level Change Using                    |     |
|   |                                                    | Ocean Syntheses                                             | 152 |
|   | 6.4                                                | Inferring Steric Sea Level from Time-Variable Gravity       |     |
|   |                                                    | and Sea Level                                               | 154 |
|   | 6.5                                                | Modeling Steric Sea-Level Rise                              | 156 |
|   | 6.6                                                | Conclusions and Recommendations                             | 166 |
|   |                                                    | Acknowledgments                                             | 168 |
|   |                                                    | References                                                  | 168 |

## Contents | vii

| 7  | Cryospheric Contributions to Sea-Level Rise and Variability<br>Konrad Steffen, Robert H. Thomas, Eric Rignot, I. Graham Cogley, |     |  |
|----|---------------------------------------------------------------------------------------------------------------------------------|-----|--|
|    | Mark B. Dvurgerov, Sarah C.B. Raper, Philippe Huvbrechts, and                                                                   |     |  |
|    | Edward Hanna                                                                                                                    |     |  |
|    | 7.1 Introduction                                                                                                                | 177 |  |
|    | 7.2 Mass-Balance Techniques                                                                                                     | 178 |  |
|    | 7.3 Ice-Sheet Mass Balance                                                                                                      | 180 |  |
|    | 7.4 Mass Balance of Glaciers and Ice Caps                                                                                       | 192 |  |
|    | 7.5 Glacier, Ice-Cap, and Ice-Sheet Modeling                                                                                    | 200 |  |
|    | 7.6 Summary and Recommendations                                                                                                 | 210 |  |
|    | References                                                                                                                      | 214 |  |
| 8  | Terrestrial Water-Storage Contributions to Sea-Level Rise                                                                       |     |  |
|    | and Variability                                                                                                                 | 226 |  |
|    | P.C.D. (Chris) Milly, Anny Cazenave, James S. Famiglietti,                                                                      |     |  |
|    | Vivien Gornitz, Katia Laval, Dennis P. Lettenmaier,                                                                             |     |  |
|    | Dork L. Sahagian, John M. Wahr, and Clark R. Wilson                                                                             |     |  |
|    | 8.1 Introduction                                                                                                                | 226 |  |
|    | 8.2 Analysis Tools                                                                                                              | 229 |  |
|    | 8.3 Climate-Driven Changes of Terrestrial Water Storage                                                                         | 236 |  |
|    | 8.4 Direct Anthropogenic Changes of Terrestrial Water Storage                                                                   | 241 |  |
|    | 8.5 Synthesis                                                                                                                   | 246 |  |
|    | 8.6 Recommendations                                                                                                             | 248 |  |
|    | References                                                                                                                      | 249 |  |
| 9  | Geodetic Observations and Global Reference Frame                                                                                |     |  |
|    | Contributions to Understanding Sea-Level Rise and Variability                                                                   | 256 |  |
|    | Geoff Blewitt, Zuheir Altamimi, James Davis, Richard Gross,                                                                     |     |  |
|    | Chung-Yen Kuo, Frank G. Lemoine, Angelyn W. Moore,                                                                              |     |  |
|    | Ruth E. Neilan, Hans-Peter Plag, Markus Rothacher, C.K. Shum,                                                                   |     |  |
|    | Michael G. Sideris, Tilo Schöne, Paul Tregoning, and Susanna Zerbini                                                            |     |  |
|    | 9.1 Introduction                                                                                                                | 256 |  |
|    | 9.2 Global and Regional Reference Systems                                                                                       | 263 |  |
|    | 9.3 Linking GPS to Tide Gauges and Tide-Gauge Benchmarks                                                                        | 274 |  |
|    | 9.4 Recommendations for Geodetic Observations                                                                                   | 279 |  |
|    | Acknowledgments                                                                                                                 | 281 |  |
|    | References                                                                                                                      | 281 |  |
| 10 | Surface Mass Loading on a Dynamic Earth: Complexity                                                                             |     |  |
|    | and Contamination in the Geodetic Analysis of Global                                                                            |     |  |
|    | Sea-Level Trends                                                                                                                | 285 |  |
|    | Jerry X. Mitrovica, Mark E. Tamisiea, Erik R. Ivins, L.L.A. (Bert)                                                              |     |  |
|    | Vermeersen, Glenn A. Milne, and Kurt Lambeck                                                                                    |     |  |
|    | 10.1 Introduction                                                                                                               | 285 |  |
|    | 10.2 Glacial Isostatic Adjustment                                                                                               | 290 |  |

## viii Contents

|    | 10.3                                                            | Sea Level, Sea Surface, and the Geoid                          | 300 |
|----|-----------------------------------------------------------------|----------------------------------------------------------------|-----|
|    | 10.4                                                            | Rapid Melting and Sea-Level Fingerprints                       | 302 |
|    | 10.5                                                            | Great Earthquakes                                              | 308 |
|    | 10.6                                                            | Final Remarks                                                  | 311 |
|    |                                                                 | Acknowledgments                                                | 313 |
|    |                                                                 | References                                                     | 313 |
| 11 | Past a                                                          | and Future Changes in Extreme Sea Levels and Waves             | 326 |
|    | Jason                                                           | A. Lowe, Philip L. Woodworth, Tom Knutson,                     |     |
|    | Ruth                                                            | E. McDonald, Kathleen L. McInnes, Katja Woth,                  |     |
|    | Hans                                                            | von Storch, Judith Wolf, Val Swail, Natacha B. Bernier,        |     |
|    | Serge                                                           | v Gulev, Kevin J. Horsburgh, Alakkat S. Unnikrishnan,          |     |
|    | John .                                                          | R. Hunter, and Ralf Weisse                                     |     |
|    | 11.1                                                            | Introduction                                                   | 326 |
|    | 11.2                                                            | Evidence for Changes in Extreme Sea Levels and                 |     |
|    |                                                                 | Waves in the Recent Past                                       | 327 |
|    | 11.3                                                            | Mid-Latitude and Tropical Storms: Changes in                   |     |
|    |                                                                 | the Atmospheric Drivers of Extreme Sea Level                   | 337 |
|    | 11.4                                                            | Future Extreme Water Levels                                    | 346 |
|    | 11.5                                                            | Future Research Needs                                          | 357 |
|    | 11.6                                                            | Conclusions                                                    | 361 |
|    |                                                                 | Acknowledgments                                                | 361 |
|    |                                                                 | References                                                     | 361 |
| 12 | Obse                                                            | rving Systems Needed to Address Sea-Level Rise and Variability | 376 |
|    | W. St                                                           | anley Wilson, Waleed Abdalati, Douglas Alsdorf, Jérôme         |     |
|    | Benve                                                           | eniste, Hans Bonekamp, J. Graham Cogley, Mark R. Drinkwater,   |     |
|    | Lee-L                                                           | ueng Fu, Richard Gross, Bruce J. Haines, D.E. Harrison,        |     |
|    | Grego                                                           | ry C. Johnson, Michael Johnson, John L. LaBrecque, Eric J.     |     |
|    | Lindstrom, Mark A. Merrifield, Laury Miller, Erricos C. Pavlis, |                                                                |     |
|    | Steph                                                           | en Piotrowicz, Dean Roemmich, Detlef Stammer, Robert H.        |     |
|    | Thom                                                            | as, Eric Thouvenot, and Philip L. Woodworth                    |     |
|    | 12.1                                                            | Introduction                                                   | 376 |
|    | 12.2                                                            | Sustained, Systematic Observing Systems                        |     |
|    |                                                                 | (Existing Capabilities)                                        | 377 |
|    | 12.3                                                            | Development of Improved Observing Systems                      |     |
|    |                                                                 | (New Capabilities)                                             | 390 |
|    | 12.4                                                            | Summary                                                        | 398 |
|    |                                                                 | References                                                     | 400 |
| 13 | Sea-L                                                           | evel Rise and Variability: Synthesis and Outlook for           |     |
|    | the F                                                           | uture                                                          | 402 |
|    | John .                                                          | A. Church, Thorkild Aarup, Philip L. Woodworth, W. Stanley     |     |
|    | Wilso                                                           | n, Robert J. Nicholls, Ralph Rayner, Kurt Lambeck, Gary T.     |     |
|    | Mitch                                                           | um, Konrad Steffen, Anny Cazenave, Geoff Blewitt, Jerry X.     |     |
|    | Mitro                                                           | vica, and Jason A. Lowe                                        |     |

### Contents ix

| 13.1 | Historical Sea-Level Change                                   | 403 |
|------|---------------------------------------------------------------|-----|
| 13.2 | Why is Sea Level Rising?                                      | 405 |
| 13.3 | The Regional Distribution of Sea-Level Rise                   | 408 |
| 13.4 | Projections of Sea-Level Rise for the 21st Century and Beyond | 409 |
| 13.5 | Changes in Extreme Events                                     | 412 |
| 13.6 | Sea Level and Society                                         | 412 |
|      | References                                                    | 416 |
|      |                                                               |     |

Index

421

# **Editor Biographies**

#### John A. Church, FTSE

John Church is an oceanographer with the Centre for Australian Weather and Climate Research and the Antarctic Climate and Ecosystems Cooperative Research Centre. He was co-convening lead author for the chapter on sea level in the IPCC Third Assessment Report. He was awarded the 2006 Roger Revelle Medal by the Intergovernmental Oceanographic Commission, a CSIRO Medal for Research Achievement in 2006, and the 2007 Eureka Prize for Scientific Research.

#### Philip L. Woodworth

Philip Woodworth works at the Proudman Oceanographic Laboratory in Liverpool. He is a former Director of the Permanent Service for Mean Sea Level (PSMSL) and Chairman of Global Sea Level Observing System (GLOSS). He has been a lead or contributing author for each of the IPCC Research Assessments. He was awarded the Denny Medal of IMAREST in 2009 for innovation in sea-level technology and the Vening Meinesz Medal of the European Geosciences Union in 2010 for work in geodesy.

#### **Thorkild Aarup**

Thorkild Aarup is Senior Program Specialist with the Intergovernmental Oceanographic Commission of UNESCO and serves as technical secretary for the Global Sea Level Observing System (GLOSS) program. He has a PhD in oceanography from the University of Copenhagen.

#### W. Stanley Wilson

Stan Wilson has managed programs during his career, first at the Office of Naval Research where he led the Navy's basic research program in physical oceanography, then at NASA Headquarters where he established the Oceanography from Space program, and finally at NOAA where he helped organize the 20-country coalition in support of the Argo Program of profiling floats. Currently the Senior Scientist for NOAA's Satellite & Information Service, he is helping transition Jason satellite altimetry from research into a capability to be sustained by the operational agencies NOAA and EUMETSAT.

# Contributors

**T. Aarup**, Intergovernmental Oceanographic Commission, UNESCO, Paris, France (t.aarup@unesco.org)

W. Abdalati, Earth Science & Observation Center, CIRES and Department of Geography, University of Colorado, Boulder, CO, USA (waleed.abdalati@ colorado.edu)

**D. Alsdorf,** School of Earth Sciences, The Ohio State University, Columbus, OH, USA (alsdorf@geology.ohio-state.edu)

Z. Altamimi, Institut Géographique National, Champs-sur-Marne, France (altamimi@ensg.ign.fr)

**F. Antonioli,** Department of Environment, Global Change and Sustainable Development, Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Rome, Italy (fabrizio.antonioli@enea.it)

M. Anzidei, Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy (marco. anzidei@ingv.it)

J. Benveniste, ESRIN, European Space Agency, Frascatti, Italy (Jerome. Benveniste@esa.int)

**N.B. Bernier**, Department of Oceanography, Dalhousie University, Halifax, Canada (natacha.bernier@phys.ocean.dal.ca)

**G. Blewitt**, Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV, USA (gblewitt@unr.edu)

**H. Bonekamp**, European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany (Hans.Bonekamp@eumetsat.int)

**A. Cazenave**, Laboratoire d'Etudes en Géophysique et Océanographie, Toulouse, France (anny.cazenave@cnes.fr)

**D.P. Chambers,** College of Marine Science, University of South Florida, St. Petersburg, FL, USA (chambers@marine.usf.edu)

**J.A. Church**, Centre for Australian Weather and Climate Research, A Partnership between CSIRO and BoM, and the Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Australia (John.Church@csiro.au)

**J.G. Cogley,** Department of Geography, Trent University, Peterborough, Ontario, Canada (gcogley@trentu.ca)

### xii Contributors

J. Davis, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA (jdavis@cfa.harvard.edu)

**C.M. Domingues,** Centre for Australian Weather and Climate Research, A Partnership between CSIRO and BoM, Melbourne, Australia (Catia.Domingues@ csiro.au)

**M.R. Drinkwater,** European Space Agency, ESTEC, The Netherlands (mark. drinkwater@esa.int)

**M.B. Dyurgerov,** INSTAAR, University of Colorado, Boulder, CO, USA (deceased)

J.S. Famiglietti, University of California, Irvine, CA, USA (jfamigli@uci.edu)

L.-L. Fu, Jet Propulsion Laboratory, Pasadena, CA, USA (llf@jpl.nasa.gov)

**W.R. Gehrels,** School of Geography, University of Plymouth, Plymouth, UK (w.r.gehrels@plymouth.ac.uk)

J.E. Gilson, Scripps Institution of Oceanography, La Jolla, CA, USA (jgilson@ucsd.edu)

V. Gornitz, NASA/GISS and Columbia University, New York, NY, USA (vgornitz@giss.nasa.gov)

**J.M. Gregory,** NCAS-Climate, Department of Meteorology, University of Reading, UK and Met Office, Hadley Centre, UK (j.m.gregory@reading.ac.uk)

**R. Gross,** Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA (richard.gross@jpl.nasa.gov)

**S. Gulev,** P.P. Shirshov Institute of Oceanology, Moscow, Russia (gul@sail.msk. ru)

**B.J. Haines**, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA (bruce.j.haines@jpl.nasa.gov)

**E. Hanna**, Department of Geography, University of Sheffield, Sheffield, UK (e.hanna@sheffield.ac.uk)

**D.E. Harrison**, Pacific Marine Environmental Laboratory, NOAA, Seattle, WA, USA (d.e.harrison@noaa.gov)

**K.J. Horsburgh**, Proudman Oceanographic Laboratory, Liverpool, UK (kevinh@ pol.ac.uk)

J.R. Hunter, Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia (john.hunter@utas.edu.au)

**P. Huybrechts**, Earth System Sciences and Department of Geography, Vrije Universiteit Brussel, Brussel, Belgium (phuybrec@vub.ac.be)

**E.R. Ivins,** Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA (eri@fryxell.jpl.nasa.gov)

**G.C. Johnson,** Pacific Marine Environmental Laboratory, NOAA, Seattle, WA, USA (gregory.c.johnson@noaa.gov)

**M. Johnson**, formerly Climate Program Office, NOAA, Silver Spring, MD, USA (now retired; mjohnson.pe@gmail.com)

T. Knutson, Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ, USA (tom.knutson@noaa.gov)

**A. Köhl**, Institut für Meereskunde, University of Hamburg, Hamburg, Germany (armin.koehl@zmaw.de)

C.-Y. Kuo, National Cheng Kung University, Taiwan (kuo70@mail.ncku.edu.tw)

J. Laborel, Université de la Méditerranée Aix-Marseille II, Marseille, France (rutabaga1@wanadoo.fr)

J.L. LaBrecque, Earth Science Division, NASA, Washington DC, USA (john. labrecque@nasa.gov)

K. Lambeck, Research School of Earth Sciences, Australian National University, Canberra, Australia and Antarctic Climate and Ecosystems Cooperative Research Centre, Australia (kurt.lambeck@anu.edu.au)

**F.W. Landerer,** Max Planck Institute for Meteorology, Hamburg, Germany (now at Jet Propulsion Laboratory, Pasadena, CA, USA) (felix.w.landerer@jpl.nasa.gov)

K. Laval, Laboratoire de Météorologie Dynamique, Paris, France (laval@lmd. jussieu.fr)

**F.G. Lemoine**, NASA Goddard Space Flight Center, Greenbelt, MD, USA (frank.g.lemoine@nasa.gov)

**P.-Y. Le Traon**, Operational Oceanography, IFREMER, Centre de Brest, Brest, France (Pierre.yves.le.traon@ifremer.fr)

**D.P. Lettenmaier**, University of Washington, Seattle, WA, USA (dennisl@u. washington.edu)

**E.J. Lindstrom**, Earth Science Division, NASA, Washington DC, USA (eric.j.lindstrom@nasa.gov)

J.A. Lowe, The Hadley Centre, Met Office, UK (jason.lowe@metoffice.gov.uk)

**B.** MacKenzie, Institute of Marine Engineering, Science and Technology, London, UK (bev.mackenzie@imarest.org)

J. Marotzke, Max Planck Institute for Meteorology, Hamburg, Germany (jochem. marotzke@zmaw.de)

### xiv Contributors

**R.E. McDonald**, The Hadley Centre, Met Office, UK (ruth.mcdonald@metoffice. gov.uk)

K.L. McInnes, CSIRO, Aspendale, Australia (kathleen.mcinnes@csiro.au)

M.A. Merrifield, Department of Oceanography, University of Hawai'i, Honolulu, Hawai'i, HI, USA (markm@soest.hawaii.edu)

L. Miller, NOAA Laboratory for Satellite Altimetry, Silver Spring, MD, USA (laury.miller@noaa.gov)

P.C.D. Milly, US Geological Survey, Princeton, NJ, USA (cmilly@usgs.gov)

G.A. Milne, Department of Earth Sciences, University of Ottawa, Ontario, Canada (gamilne@uottawa.ca)

**G.T. Mitchum**, College of Marine Sciences, University of South Florida, St. Petersburg, FL, USA (mitchum@marine.usf.edu)

**J.X. Mitrovica**, Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA (jxm@eps.harvard.edu)

**A.W. Moore**, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA (angelyn.moore@jpl.nasa.gov)

**R.E. Neilan**, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA (ruth.neilan@jpl.nasa.gov)

**R.S. Nerem**, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA (nerem@colorado.edu)

**R.J. Nicholls,** School of Civil Engineering and the Environment, and the Tyndall Centre for Climate Change Research, University of Southampton, Southampton, UK (r.j.nicholls@soton.ac.uk)

**E.C. Pavlis,** University of Maryland and Space Geodesy Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA (epavlis@umbc.edu)

**S. Piotrowicz,** Climate Program Office, NOAA, Silver Spring, MD, USA (steve. piotrowicz@noaa.gov)

**H.P. Plag**, Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV, USA (hpplag@unr.edu)

**S.C.B. Raper**, Department for Air Transport and the Environment, Manchester Metropolitan University, Manchester, UK (s.raper@mmu.ac.uk)

**R. Rayner,** Institute of Marine Engineering, Science and Technology, London, UK (ralph@ralphrayner.org)

**E. Rignot**, Centro de Estudios Científicos, Valdivia, Chile; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA and University of California, Department of Earth System Science, Irvine, CA, USA (eric.rignot@jpl.nasa.gov)

**D. Roemmich**, Scripps Institution of Oceanography, La Jolla, CA, USA (droemmich@ucsd.edu)

**M. Rothacher,** GeoForschungsZentrum, Potsdam, Germany (markus. rothacher@ethz.ch )

**D.L. Sahagian**, Environmental Initiative, Lehigh University, Bethlehem, PA, USA (dork.sahagian@lehigh.edu)

**T. Schöne**, GeoForschungsZentrum, Potsdam, Germany (tschoene@gfz-potsdam.de)

**C.K. Shum,** School of Earth Sciences, The Ohio State University, Columbus, OH, USA (ckshum@osu.edu)

**M.G. Sideris**, Department of Geomatics Engineering, University of Calgary, Alberta, Canada (sideris@ucalgary.ca)

**D. Stammer,** University of Hamburg, Hamburg, Germany (detlef.stammer@ zmaw.de)

K. Steffen, CIRES (Cooperative Institute for Research in Environmental Sciences), University of Colorado, Boulder, CO, USA (konrad.steffen@colorado. edu)

W. Sturges, Department of Oceanography, Florida State University, Tallahassee, FL, USA (sturges@ocean.fsu.edu)

**T. Suzuki**, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan (tsuzuki@jamstec.go.jp)

V. Swail, Environment Canada, Downsview, Canada (val.swail@ec.gc.ca)

M.E. Tamisiea, Proudman Oceanographic Laboratory, Liverpool, UK (mtam@pol.ac.uk)

**R.H. Thomas**, EG&G Services, NASA/GSFC/Wallops Flight Facility, Wallops Island, VA, USA (robert\_thomas@hotmail.com)

**E. Thouvenot,** Strategy & Programmes Directorate, CNES, Toulouse, France (eric.thouvenot@cnes.fr)

**P. Tregoning**, The Australian National University, Canberra, Australia (paul. tregoning@anu.edu.au)

A.S. Unnikrishnan, National Institute of Oceanography, Goa, India (unni@nio. org)

**L.L.A. Vermeersen,** Delft Institute of Earth Observation & Space Systems (DEOS), Delft University of Technology, The Netherlands (l.l.a.vermeersen@ tu.delft.nl)

H. von Storch, GKSS, Geesthacht, Germany (hvonstorch@web.de)

### xvi Contributors

J.M. Wahr, University of Colorado, Boulder, CO, USA (john.wahr@colorado. edu)

R. Weisse, GKSS, Geesthacht, Germany (weisse@gkss.de)

**N.J. White**, Centre for Australian Weather and Climate Research, A Partnership between CSIRO and BoM, and the Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Australia (Neil.White@csiro.au)

J.K. Willis, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA (joshua.k.willis@jpl.nasa.gov)

C.R. Wilson, University of Texas, Austin, TX, USA (crwilson@mail.utexas.edu)

W.S. Wilson, NOAA Satellite & Information Service, Silver Spring, MD, USA (stan.wilson@noaa.gov)

J. Wolf, Proudman Oceanographic Laboratory, Liverpool, UK (jaw@pol.ac.uk)

**C.D. Woodroffe**, School of Earth and Environmental Sciences, University of Wollongong, NSW, Australia (colin@uow.edu.au)

**P.L. Woodworth,** Proudman Oceanographic Laboratory, Liverpool, UK (plw@ pol.ac.uk)

K. Woth, GKSS, Geesthacht, Germany (woth@gkss.de)

**A.J. Wright**, Faculty of Earth and Life Sciences, Department of Marine Biogeology, Vrije Universiteit, Amsterdam, The Netherlands (alex.wright@falw.vu.nl)

**S. Zerbini**, Department of Physics, University of Bologna, Italy (susanna.zerbini@ unibo.it)

# Foreword

Sea-level variability and change are manifestations of climate variability and change. The 20th-century rise and the recently observed increase in the rate of rise were important results highlighted in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report completed in 2007.

In the last few years, there have been a number of major coastal flooding events in association with major storms such as Hurricane Katrina in 2005 and the Cyclones Sidr and Nargis in 2007 and 2008 respectively. The loss of life has been measured in hundreds of thousands and the damage to coastal infrastructure in billions of dollars. Such major coastal flooding events are likely to continue as sea level rises and have a greater impact as the population of the coastal zone increases.

The rate of coastal sea-level rise in the 21st century and its impacts on coasts and islands as expressed in the 2007 IPCC report contained major uncertainties. Incomplete understanding of the ocean thermal expansion, especially that of the deeper parts of the ocean, and uncertainties in the estimates of glacier mass balance and the stability of ice sheets are among the many factors which limit our ability to narrow projections of future sea-level rise. In particular, the instability of ice sheets requires special attention because it could lead potentially to a significant increase in the rate of sea-level rise over and above that of the 2007 IPCC report.

The World Climate Research Programme has led the development of the physical scientific basis that underpins the IPCC Assessments. On 6–9 June 2006 it organized a workshop in Paris, France, that brought together the world's specialists on the many aspects of the science of sea-level change to provide a robust assessment of our current understanding as well as the requirements for narrowing projections of future sea-level rise. The present book is based on the deliberations at the workshop and provides a comprehensive overview of present knowledge on the science of sea-level change.

The findings in this book will help set priorities for research and for observational activities over the next decade that will contribute to future assessments of the IPCC. In turn, the improvements in these assessments will better inform governments, industry, and society in their efforts to formulate sound mitigation and adaptation responses to rising greenhouse gas concentrations and sea level, and their economic and social consequences. In that respect, information on

### xviii Foreword

global and regional sea-level comprises an important product of a climate service. Its generation cuts across many disciplines and observation systems and requires effective coordination among many organizations.

Michel Jarraud Secretary-General, World Meteorological Organization

Wendy Watson-Wright Assistant Director-General, UNESCO Executive Secretary, Intergovernmental Oceanographic Commission of UNESCO

Deliang Chen Executive Director, International Council for Science

# Acknowledgments

The World Climate Research Programme, with the support of the Intergovernmental Oceanographic Commission of UNESCO, initiated the Sea-Level Workshop that led to this book. The completion of this book would not have been possible without the participation of attendees in the original workshop and their contributions to the various chapters, and of course without the help of the many sponsors and participating organizations listed below. We thank all of these people and organizations for their support. We would particularly like to express our appreciation to Emily Wallace (GRS Solutions) for her administrative and logistical support to the organizing committee prior to, during, and immediately following this workshop. We also thank Catherine Michaut (WCRP/COPES Support Unit, Université Pierre et Marie Curie) for administrative support and website development; as well as Pam Coghlan, Laurence Ferry, and Adrien Vannier (Intergovernmental Oceanographic Commission of UNESCO) for administrative logistical assistance prior to and during the workshop. We also thank Neil White, Lea Crosswell, Craig Macauley, Louise Bell, and Robert Smith for their efforts in the preparation of a number of the figures.

JAC acknowledges the support of the Australian Climate Change Science Program, the Wealth from Oceans Flagship, and the Australian Government's Cooperative Research Centres Program through the Antarctic Climate and Ecosystems Cooperative Research Centre. WSW acknowledges the financial support provided by the Research-to-Operations Congressional Earmark to NOAA.

> John A. Church, Philip L. Woodworth, Thorkild Aarup, and W. Stanley Wilson

### Cosponsors

- ACE CRC: Antarctic Climate and Ecosystems Cooperative Research Centre (Australia)
- AGO: Australian Greenhouse Office (Australia)
- BoM: Bureau of Meteorology (Australia)
- CNES: Centre National d'Etudes Spatiales (France)
- CNRS: Centre National de la Recherche Scientifique (France)

### xx Acknowledgments

CSIRO: Commonwealth Scientific and Industrial Research Organization (Australia) DFO: Department of Fisheries & Oceans (Canada) EEA: European Environment Agency ESA: European Space Agency ESF-Marine Board: Marine Board of the European Science Foundation EUMETSAT: European Organization for the Exploitation of Meteorological Satellites EU: European Union GEO: Group on Earth Observations GKSS: GKSS Forschungszentrum (Germany) IASC: International Arctic Science Committee IAG: International Association of Geodesy IAPSO: International Association for the Physical Sciences of the Oceans IACMST: Interagency Committee on Marine Science and Technology (UK) ICSU: International Council for Science IFREMER: Institut Français de Recherche pour l'Exploitation de la Mer (France) IGN: Institut Geographique National (France) IOC of UNESCO: Intergovernmental Oceanographic Commission IPY: International Polar Year IRD: Institut de Recherche pour le Développement (France) NASA: National Aeronautics and Space Administration (USA) NSF: National Science Foundation (USA) NOAA: National Oceanic and Atmospheric Administration (USA) NERC: Natural Environment Research Council (UK) Rijkswaterstaat (The Netherlands) SCAR: Scientific Committee for Antarctic Research TU Delft: Delft University of Technology (The Netherlands) UKMO: The Met Office (UK) UNESCO: United Nations Educational, Scientific and Cultural Organization WCRP: World Climate Research Programme WMO: World Meteorological Organization

### **Participating Organizations and Programs**

Argo: International Argo Project CryoSat: ESA's Ice Mission (ESA) ENVISAT: Environmental Satellite (ESA) ERS: European Remote Sensing satellite (ESA) GCOS: Global Climate Observing System GGOS: Global Geodetic Observing System GLOSS: Global Sea-Level Observing System GOCE: Gravity Field and Steady-State Ocean Circulation Explorer (ESA) GOOS: Global Ocean Observing System GRACE: Gravity Recovery and Climate Experiment (NASA) ICESat: Ice, Cloud, and Land Elevation Satellite (NASA) IGS: International GNSS Service Jason: Ocean Surface Topography from Space (NASA/CNES) SMOS: Soil Moisture and Ocean Salinity (ESA)

# Abbreviations and Acronyms

| AES40<br>ANU<br>AOGCM | North Atlantic wind and wave climatology<br>developed at Oceanweather with support<br>from Climate Research Branch of<br>Environment Canada<br>Australian National University<br>atmosphere–ocean general circulation model |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | IBCC Fourth Assessment Papart                                                                                                                                                                                               |
| RD                    | hefore present                                                                                                                                                                                                              |
| CCM2                  | NCAR Community Climate Model version                                                                                                                                                                                        |
| COMZ                  | 2                                                                                                                                                                                                                           |
| cGPS                  | continuous GPS                                                                                                                                                                                                              |
| CLASIC                | Climate and Sea Level in parts of the                                                                                                                                                                                       |
|                       | Indian Subcontinent                                                                                                                                                                                                         |
| CLIMBER               | Climate and Biosphere model (of the                                                                                                                                                                                         |
|                       | Potsdam Institute for Climate)                                                                                                                                                                                              |
| CLIVAR                | Climate Variability and Predictability                                                                                                                                                                                      |
|                       | project                                                                                                                                                                                                                     |
| CLM                   | Climate Version of the Local Model                                                                                                                                                                                          |
|                       | developed from the LM by the CLM                                                                                                                                                                                            |
|                       | Community (clm.gkss.de)                                                                                                                                                                                                     |
| CNES                  | Centre National d'Etudes Spatiales (France)                                                                                                                                                                                 |
| CRF                   | celestial reference frame                                                                                                                                                                                                   |
| CS3                   | POL barotropic model for the European                                                                                                                                                                                       |
|                       | Continental Shelf (1/9°×1/6° latitude by                                                                                                                                                                                    |
|                       | longitude or approximately 12 km                                                                                                                                                                                            |
|                       | resolution)                                                                                                                                                                                                                 |
| CSIRO                 | Commonwealth Scientific and Industrial                                                                                                                                                                                      |
|                       | Research Organisation (CSIRO); also to                                                                                                                                                                                      |
|                       | refer to the climate model developed by                                                                                                                                                                                     |
|                       | CSIRO                                                                                                                                                                                                                       |
| CSX                   | POL barotropic model for the European                                                                                                                                                                                       |
|                       | Continental Shelf $(1/3^{\circ} \times 1/2^{\circ})$ latitude by                                                                                                                                                            |
|                       | longitude or approximately 35 km                                                                                                                                                                                            |
|                       | resolution)                                                                                                                                                                                                                 |
| CZMS                  | Coastal Zone Management Subgroup                                                                                                                                                                                            |
| DIVA model            | Dynamic Interactive Vulnerability                                                                                                                                                                                           |
|                       | Assessment model                                                                                                                                                                                                            |

### Abbreviations and Acronyms | xxiii

| DORIS                    | Doppler Orbitography and<br>Radiopositioning Integrated by Satellite     |
|--------------------------|--------------------------------------------------------------------------|
| ЕСНАМ3, ЕСНАМ4, ЕСНАМ5   | atmosphere-only versions of the European<br>Centre Hamburg climate model |
| ECHAM5-OM, ECHAM4/       | alternative coupled models (atmosphere                                   |
| OPYC3, ECHAM5/MPI-OM1    | and ocean) versions of the European<br>Centre Hamburg climate model      |
| ECMWF                    | European Centre for Medium-Range<br>Weather Forecasts                    |
| FNSO                     | Fl Niño Southern Oscillation                                             |
| FNVISAT                  | Environmental Satellite (FSA)                                            |
| FOF                      | empirical orthogonal function                                            |
| FOP                      | Farth Orientation Parameters                                             |
|                          | reanalysis product provided by ECMWE                                     |
| ERA-40                   | (http://www.comvefint/necconsh/one/)                                     |
| EDC 1 2                  | (http://www.ecmwi.int/research/era/)                                     |
| EK5-1, -2                | European Remote Sensing satellites 1 and 2                               |
|                          | European Space Agency                                                    |
| EUMEISAI                 | of Meteorological Satellites                                             |
| GCM                      | general circulation model                                                |
| GCN                      | GLOSS Core Network                                                       |
| GCOM2D                   | Global Coastal Ocean Model, depth-average version                        |
| GCOS                     | Global Climate Observing System                                          |
| GEOSS                    | Global Earth Observation System of                                       |
|                          | Systems                                                                  |
| GFDL                     | Geophysical Fluid Dynamics Laboratory                                    |
|                          | (of the National Oceanic and Atmospheric                                 |
|                          | Administration)                                                          |
| GFO                      | GeoSat Follow-on Satellite                                               |
| GGOS                     | Global Geodetic Observing System                                         |
| GIA                      | glacial isostatic adjustment                                             |
| GLIMS                    | Global Land Ice Measurements from Space                                  |
| GLONASS                  | Global Orbiting Navigation Satellite System                              |
| GLOSS                    | Global Sea Level Observing System                                        |
| GNSS                     | Global Navigation Satellite System                                       |
| GOCE                     | Gravity Field and Steady-State Ocean                                     |
|                          | Circulation Explorer                                                     |
| GODAE                    | Global Ocean Data Assimilation                                           |
|                          | Experiment                                                               |
| GOOS                     | Global Ocean Observing System                                            |
| GPS                      | Global Positioning System                                                |
| GRACE                    | Gravity Recovery and Climate Experiment                                  |
| HadAM3, HadAM3P, HadAM3H | variants of the Hadley Centre atmospheric                                |
|                          | climate model, version 3                                                 |

# xxiv Abbreviations and Acronyms

| HadCM2, HadCM3 | versions of the Hadley Centre coupled      |
|----------------|--------------------------------------------|
|                | climate model                              |
| HadKM2, HadKM3 | atmospheric climate model                  |
| IAG            | International Association of Geodesv       |
| ICESat         | Ice Cloud and Land Elevation Satellite     |
| IDS            | International DOPIS Service                |
| IEDS           | International Earth Potation and Pafarance |
| TERS           | Systems Service                            |
| ICES           | International Cravity Field Service        |
|                | Integrated Clobal Observing                |
| 1605-1         | Stratogy Darth archin                      |
| ICS            | International CNSS Sorvice                 |
|                | International Lasar Dancing Compile        |
|                | international Laser Ranging Service        |
| INSAR          | Interferometric synthetic aperture radar   |
| IOC            | Commission                                 |
| IDCC           |                                            |
| IPCC           | Intergovernmental Panel on Climate Change  |
| ISMASS         | Ice Sheet Mass Balance and Sea Level       |
|                | project                                    |
|                | International Ierrestrial Reference Frame  |
| ITRS           | International Terrestrial Reference System |
| IVS            | International VLBI Service                 |
| JCOMM          | WMO/IOC Joint Technical Commission         |
|                | for Oceanography and Marine Meteorology    |
| JMA            | Japan Meteorological Agency                |
| JMA T106       | JMA GCM with T106 spatial resolution       |
|                | $(1.1^{\circ}\times1.1^{\circ})$           |
| ka             | thousand years ago                         |
| KNMI           | Royal Netherlands Meteorological Institute |
| LGM            | Last Glacial Maximum                       |
| LSM            | land-surface model                         |
| MEO            | Medium Earth Orbit(er)                     |
| MIROC          | Model for Interdisciplinary Research on    |
|                | Climate series of models                   |
| MIS            | marine oxygen isotope stage                |
| MLWS           | mean low water springs                     |
| MWP            | melt water pulse                           |
| NAO            | North Atlantic Oscillation                 |
| NASA           | National Aeronautics and Space             |
|                | Administration (USA)                       |
| NCAR           | National Center for Atmospheric Research   |
|                | (USA)                                      |
| NCEP           | National Centers for Environmental         |
|                | Prediction (NOAA)                          |

### Abbreviations and Acronyms xxv

| NOAA       | National Oceanic and Atmospheric<br>Administration (USA) |
|------------|----------------------------------------------------------|
| ODINAfrica | Ocean Data and Information Network for<br>Africa         |
| ORCHIDEE   | French global land surface model                         |
| OSTM       | Ocean Surface Topography Mission (radar                  |
| DDI        | altimeter mission)                                       |
| PDI        | power dissipation index                                  |
| POL        | Proudman Oceangraphic Laboratory (UK)                    |
| POLCOMS    | POL Coastal-Ocean Modelling System (a                    |
| 2014       | three-dimensional model for shelf regions)               |
| POM        | Princeton Ocean Model                                    |
| PRUDENCE   | Prediction of Regional Scenarios and                     |
|            | Uncertainties for Defining European                      |
|            | Climate Change Risks and Effects                         |
|            | (European Union-funded project)                          |
| PSMSL      | Permanent Service for Mean Sea Level                     |
| RACMO      | Regional Atmospheric Climate Model<br>(KNMI)             |
| RCAO       | Rossby Centre Regional Atmosphere-Ocean                  |
|            | model                                                    |
| REMO       | Hamburg regional climate model                           |
| RLR        | Revised Local Reference data set of the                  |
|            | PSMSL                                                    |
| RSLR       | relative sea-level rise                                  |
| SAR        | synthetic aperture radar                                 |
| SLR        | satellite laser ranging                                  |
| SRALT      | satellite radar altimetry                                |
| SRES       | Special Report on Emissions Scenarios, and               |
|            | the scenarios therein                                    |
| SST        | sea-surface temperature                                  |
| STOWASUS   | Regional Storm, Wave and Surge Scenarios                 |
|            | for the 2100 century                                     |
| SWH        | significant wave height                                  |
| SWOT       | Surface Water Ocean Topography (NASA)                    |
| TAR        | IPCC Third Assessment Report                             |
| TE2100     | Thames Estuary in 2100 project (of the UK                |
|            | Environment Agency)                                      |
| TIGA-PP    | Tide Gauge Benchmark Monitoring Pilot                    |
|            | Project of the IGS                                       |
| T/P        | TOPEX/Poseidon radar altimeter satellite                 |
| TPW        | true polar wander                                        |
| TRF        | terrestrial reference frame                              |
| TRIMGEO    | Tidal Residual and Intertidal Mudflat                    |
|            | Model                                                    |
|            |                                                          |

## xxvi Abbreviations and Acronyms

| TRS    | Terrestrial Reference System               |
|--------|--------------------------------------------|
| UNESCO | United Nations Educational, Scientific and |
|        | Cultural Organization                      |
| VLBI   | very-long-baseline interferometry          |
| WASA   | Waves and Storms in the North Atlantic     |
|        | (European Union-funded project)            |
| WCRP   | World Climate Research Programme           |
| WMO    | World Meteorological Organization          |
| WOCE   | World Ocean Circulation Experiment         |
| XBT    | expendable bathythermograph                |
|        |                                            |